4,816 research outputs found

    Screening of squirrel monkeys /Saimiri sciureus/ for vestibular function studies

    Get PDF
    Pathological changes and morphology of squirrel monkeys determined in screening for vestibular function studie

    Resonant x-ray scattering spectra from multipole orderings: Np M_{4,5} edges in NpO2

    Full text link
    We study resonant x-ray scattering (RXS) at Np M_{4,5} edges in the triple-\textbf{k} multipole ordering phase in NpO_{2}, on the basis of a localized electron model. We derive an expression for RXS amplitudes to characterize the spectra under the assumption that a rotational invariance is preserved in the intermediate state of scattering process. This assumption is justified by the fact that energies of the crystal electric field and the intersite interaction is smaller than the energy of multiplet structures. This expression is found useful to calculate energy profiles with taking account of the intra-Coulomb and spin-orbit interactions. Assuming the \Gamma_{8}-quartet ground state, we construct the triple-\textbf{k} ground state, and analyze the RXS spectra. The energy profiles are calculated in good agreement with the experiment, providing a sound basis to previous phenomenological analyses.Comment: 10 pages, 7 figure

    Spin Excitations and Sum Rules in the Heisenberg Antiferromagnet

    Full text link
    Various bounds for the energy of collective excitations in the Heisenberg antiferromagnet are presented and discussed using the formalism of sum rules. We show that the Feynman approximation significantly overestimates (by about 30\% in the S=12S={1\over2} square lattice) the spin velocity due to the non negligible contribution of multi magnons to the energy weighted sum rule. We also discuss a different, Goldstone type bound depending explicitly on the order parameter (staggered magnetization). This bound is shown to be proportional to the dispersion of classical spin wave theory with a q-independent normalization factor. Rigorous bounds for the excitation energies in the anisotropic Heisenberg model are also presented.Comment: 26 pages, Plain TeX including 1 PostScript figure, UTF-307-10/9

    Spin Waves in Quantum Antiferromagnets

    Full text link
    Using a self-consistent mean-field theory for the S=1/2S=1/2 Heisenberg antiferromagnet Kr\"uger and Schuck recently derived an analytic expression for the dispersion. It is exact in one dimension (d=1d=1) and agrees well with numerical results in d=2d=2. With an expansion in powers of the inverse coordination number 1/Z1/Z (Z=2dZ=2d) we investigate if this expression can be {\em exact} for all dd. The projection method of Mori-Zwanzig is used for the {\em dynamical} spin susceptibility. We find that the expression of Kr\"uger and Schuck deviates in order 1/Z21/Z^2 from our rigorous result. Our method is generalised to arbitrary spin SS and to models with easy-axis anisotropy \D. It can be systematically improved to higher orders in 1/Z1/Z. We clarify its relation to the 1/S1/S expansion.Comment: 8 pages, uuencoded compressed PS-file, accepted as Euro. Phys. Lette

    BRST Formulation of 4-Monopoles

    Get PDF
    A supersymmetric gauge invariant action is constructed over any 4-dimensional Riemannian manifold describing Witten's theory of 4-monopoles. The topological supersymmetric algebra closes off-shell. The multiplets include the auxiliary fields and the Wess-Zumino fields in an unusual way, arising naturally from BRST gauge fixing. A new canonical approach over Riemann manifolds is followed, using a Morse function as an euclidean time and taking into account the BRST boundary conditions that come from the BFV formulation. This allows a construction of the effective action starting from gauge principles.Comment: 18 pages, Amste

    Quasi-Solitons in Dissipative Systems and Exactly Solvable Lattice Models

    Full text link
    A system of first-order differential-difference equations with time lag describes the formation of density waves, called as quasi-solitons for dissipative systems in this paper. For co-moving density waves, the system reduces to some exactly solvable lattice models. We construct a shock-wave solution as well as one-quasi-soliton solution, and argue that there are pseudo-conserved quantities which characterize the formation of the co-moving waves. The simplest non-trivial one is given to discuss the presence of a cascade phenomena in relaxation process toward the pattern formation.Comment: REVTeX, 4 pages, 1 figur

    Mechanism of resonant x-ray magnetic scattering in NiO

    Full text link
    We study the resonant x-ray magnetic scattering (RXMS) around the K edge of Ni in the antiferromagnet NiO, by treating the 4p states of Ni as a band and the 3d states as localized states. We propose a mechanism that the 4p states are coupled to the magnetic order through the intra-atomic Coulomb interaction between the 4p and the 3d states and through the p-d mixing to the 3d states of neighboring Ni atoms. These couplings induce the orbital moment in the 4p band, and thereby give rise to the RXMS intensity at the K edge in the dipolar process. It is found that the spin-orbit interaction in the 4p band has negligibly small contribution to the RXMS intensity. The present model reproduces well the experimental spectra. We also discuss the azimuthal angle dependence of the intensity.Comment: 10 pages (revtex) and 7 postscript figure

    A theory of the electric quadrupole contribution to resonant x-ray scattering: Application to multipole ordering phases in Ce_{1-x}La_{x}B_{6}

    Full text link
    We study the electric quadrupole (E2) contribution to resonant x-ray scattering (RXS). Under the assumption that the rotational invariance is preserved in the Hamiltonian describing the intermediate state of scattering, we derive a useful expression for the RXS amplitude. One of the advantages the derived expression possesses is the full information of the energy dependence, lacking in all the previous studies using the fast collision approximation. The expression is also helpful to classify the spectra into multipole order parameters which are brought about. The expression is suitable to investigate the RXS spectra in the localized f electron systems. We demonstrate the usefulness of the formula by calculating the RXS spectra at the Ce L_{2,3} edges in Ce_{1-x}La_{x}B_{6} on the basis of the formula. We obtain the spectra as a function of energy in agreement with the experiment of Ce_{0.7}La_{0.3}B_{6}. Analyzing the azimuthal angle dependence, we find the sixfold symmetry in the \sigma-\sigma' channel and the threefold onein the \sigma-\pi' channel not only in the antiferrooctupole (AFO) ordering phase but also in the antiferroquadrupole (AFQ) ordering phase, which behavior depends strongly on the domain distribution. The sixfold symmetry in the AFQ phase arises from the simultaneously induced hexadecapole order. Although the AFO order is plausible for phase IV in Ce_{1-x}La_{x}B_{6}, the possibility of the AFQ order may not be ruled out on the basis of azimuthal angle dependence alone.Comment: 12 pages, 6 figure
    corecore