4,816 research outputs found
Screening of squirrel monkeys /Saimiri sciureus/ for vestibular function studies
Pathological changes and morphology of squirrel monkeys determined in screening for vestibular function studie
Resonant x-ray scattering spectra from multipole orderings: Np M_{4,5} edges in NpO2
We study resonant x-ray scattering (RXS) at Np M_{4,5} edges in the
triple-\textbf{k} multipole ordering phase in NpO_{2}, on the basis of a
localized electron model. We derive an expression for RXS amplitudes to
characterize the spectra under the assumption that a rotational invariance is
preserved in the intermediate state of scattering process. This assumption is
justified by the fact that energies of the crystal electric field and the
intersite interaction is smaller than the energy of multiplet structures. This
expression is found useful to calculate energy profiles with taking account of
the intra-Coulomb and spin-orbit interactions. Assuming the \Gamma_{8}-quartet
ground state, we construct the triple-\textbf{k} ground state, and analyze the
RXS spectra. The energy profiles are calculated in good agreement with the
experiment, providing a sound basis to previous phenomenological analyses.Comment: 10 pages, 7 figure
Spin Excitations and Sum Rules in the Heisenberg Antiferromagnet
Various bounds for the energy of collective excitations in the Heisenberg
antiferromagnet are presented and discussed using the formalism of sum rules.
We show that the Feynman approximation significantly overestimates (by about
30\% in the square lattice) the spin velocity due to the non
negligible contribution of multi magnons to the energy weighted sum rule. We
also discuss a different, Goldstone type bound depending explicitly on the
order parameter (staggered magnetization). This bound is shown to be
proportional to the dispersion of classical spin wave theory with a
q-independent normalization factor. Rigorous bounds for the excitation energies
in the anisotropic Heisenberg model are also presented.Comment: 26 pages, Plain TeX including 1 PostScript figure, UTF-307-10/9
Spin Waves in Quantum Antiferromagnets
Using a self-consistent mean-field theory for the Heisenberg
antiferromagnet Kr\"uger and Schuck recently derived an analytic expression for
the dispersion. It is exact in one dimension () and agrees well with
numerical results in . With an expansion in powers of the inverse
coordination number () we investigate if this expression can be
{\em exact} for all . The projection method of Mori-Zwanzig is used for the
{\em dynamical} spin susceptibility. We find that the expression of Kr\"uger
and Schuck deviates in order from our rigorous result. Our method is
generalised to arbitrary spin and to models with easy-axis anisotropy \D.
It can be systematically improved to higher orders in . We clarify its
relation to the expansion.Comment: 8 pages, uuencoded compressed PS-file, accepted as Euro. Phys. Lette
BRST Formulation of 4-Monopoles
A supersymmetric gauge invariant action is constructed over any 4-dimensional
Riemannian manifold describing Witten's theory of 4-monopoles. The topological
supersymmetric algebra closes off-shell. The multiplets include the auxiliary
fields and the Wess-Zumino fields in an unusual way, arising naturally from
BRST gauge fixing. A new canonical approach over Riemann manifolds is followed,
using a Morse function as an euclidean time and taking into account the BRST
boundary conditions that come from the BFV formulation. This allows a
construction of the effective action starting from gauge principles.Comment: 18 pages, Amste
Quasi-Solitons in Dissipative Systems and Exactly Solvable Lattice Models
A system of first-order differential-difference equations with time lag
describes the formation of density waves, called as quasi-solitons for
dissipative systems in this paper. For co-moving density waves, the system
reduces to some exactly solvable lattice models. We construct a shock-wave
solution as well as one-quasi-soliton solution, and argue that there are
pseudo-conserved quantities which characterize the formation of the co-moving
waves. The simplest non-trivial one is given to discuss the presence of a
cascade phenomena in relaxation process toward the pattern formation.Comment: REVTeX, 4 pages, 1 figur
Mechanism of resonant x-ray magnetic scattering in NiO
We study the resonant x-ray magnetic scattering (RXMS) around the K edge of
Ni in the antiferromagnet NiO, by treating the 4p states of Ni as a band and
the 3d states as localized states. We propose a mechanism that the 4p states
are coupled to the magnetic order through the intra-atomic Coulomb interaction
between the 4p and the 3d states and through the p-d mixing to the 3d states of
neighboring Ni atoms. These couplings induce the orbital moment in the 4p band,
and thereby give rise to the RXMS intensity at the K edge in the dipolar
process. It is found that the spin-orbit interaction in the 4p band has
negligibly small contribution to the RXMS intensity. The present model
reproduces well the experimental spectra. We also discuss the azimuthal angle
dependence of the intensity.Comment: 10 pages (revtex) and 7 postscript figure
A theory of the electric quadrupole contribution to resonant x-ray scattering: Application to multipole ordering phases in Ce_{1-x}La_{x}B_{6}
We study the electric quadrupole (E2) contribution to resonant x-ray
scattering (RXS). Under the assumption that the rotational invariance is
preserved in the Hamiltonian describing the intermediate state of scattering,
we derive a useful expression for the RXS amplitude. One of the advantages the
derived expression possesses is the full information of the energy dependence,
lacking in all the previous studies using the fast collision approximation. The
expression is also helpful to classify the spectra into multipole order
parameters which are brought about. The expression is suitable to investigate
the RXS spectra in the localized f electron systems. We demonstrate the
usefulness of the formula by calculating the RXS spectra at the Ce L_{2,3}
edges in Ce_{1-x}La_{x}B_{6} on the basis of the formula. We obtain the spectra
as a function of energy in agreement with the experiment of
Ce_{0.7}La_{0.3}B_{6}. Analyzing the azimuthal angle dependence, we find the
sixfold symmetry in the \sigma-\sigma' channel and the threefold onein the
\sigma-\pi' channel not only in the antiferrooctupole (AFO) ordering phase but
also in the antiferroquadrupole (AFQ) ordering phase, which behavior depends
strongly on the domain distribution. The sixfold symmetry in the AFQ phase
arises from the simultaneously induced hexadecapole order. Although the AFO
order is plausible for phase IV in Ce_{1-x}La_{x}B_{6}, the possibility of the
AFQ order may not be ruled out on the basis of azimuthal angle dependence
alone.Comment: 12 pages, 6 figure
- …