3 research outputs found

    Evaluation of the utility value of three diagnostic methods in the detection of malaria parasites in endemic area

    No full text
    Abstract Background Malaria is a debilitating disease with high morbidity and mortality in Africa, commonly caused by different species of the genus Plasmodium in humans. Misdiagnosis is a major challenge in endemic areas because of other disease complications and technical expertise of the medical laboratory staff. Microscopic method using Giemsa-stained blood film has been the mainstay of diagnosis of malaria. However, since 1993 when rapid diagnostic test (RDT) kits were introduced, they have proved to be effective in the diagnosis of malaria. This study was aimed at comparing the accuracy of microscopy and RDTs in the diagnosis of malaria using nested PCR as the reference standard. Four hundred and twenty (420) venous blood specimens were collected from patients attending different General Hospitals in Ebonyi State with clinical symptoms of malaria. The samples were tested with Giemsa-stained microscopy and three RDTs. Fifty specimens were randomly selected for molecular analysis. Results Using different diagnostic methods, the prevalence of malaria among the subjects studied was 25.95% as detected by microscopy, prevalence found among the RDTs was 22.90, 15.20 and 54.80% for Carestart, SD Bioline PF and SD Bioline PF/PV, respectively. Molecular assay yielded a prevalence of 32%. The major specie identified was Plasmodium falciparum; there was co-infection of P. falciparum with Plasmodium malariae and Plasmodium ovale. The sensitivity and specificity of microscopy was 50.00 and 70.59% while that of the RDTs were (25.00 and 85.29%), (25.00 and 94.12%) and (68.75 and 52.94%) for Carestart, SD Bioline PF and SD Bioline PF/PV, respectively. Cohen’s kappa coefficient was used to measure the level of agreement of the methods with nested PCR. Microscopy showed a moderate measure of agreement (k = 0.491), Carestart showed a good measure of agreement (k = 0.611), SD Bioline PF showed a fair measure of agreement (k = 0.226) while SD Bioline PF/PV showed a poor measure of agreement (k = 0.172). Conclusions This study recommends that the policy of malaria diagnosis be changed such that the routine diagnosis of malaria is done by a combination of both microscopy and a RDT kit of high sensitivity and specificity so as to complement the errors associated with either of the methods. The finding of P. ovale in the study area necessitates an expanded molecular epidemiology of malaria within the study area

    The Bacteriology and Its Virulence Factors in Neonatal Infections: Threats to Child Survival Strategies

    No full text
    Background. Neonatal infection refers to the infection of the newborn during the first twenty-eight days of life. It is one of the causes of infant morbidity and mortality worldwide. The aim of the study is to determine the relative contribution of the different pathogens to the overall disease burden. It will also determine the mechanisms of virulence of these pathogens that cause neonatal infections at Chukwuemeka Odumegwu Ojukwu University Teaching Hospital (COOUTH), Awka. Methods. Biological samples were collected from 30 neonates admitted at the special care baby unit (SCBU) of COOUTH and cultured using selective media and nutrient agar. The isolates were identified using microbiological and biochemical tests. The antibiogram study was determined using Kirby-Bauer disc diffusion method on Mueller Hinton Agar. Several methods previously reported in literature were used for the characterization of the virulence factors. Results. From the 30 blood samples collected, Pseudomonas spp. (19.7%), Escherichia coli (23%), Salmonella spp. (24.6%), and Staphylococcus aureus (32.8%) were isolated. Male to female ratio of study population was 1.5: 1. The isolates were 100 % resistant to ticarcillin, cephalothin, ceftazidime, and cefuroxime but appreciably susceptible to only levofloxacin (88.85%). They were moderately susceptible to ceftriaxone/sulbactam (39.05%) and azithromycin (26.46%). Common virulence factors identified among the isolates (up to 90 %) were hemolysin, biofilm formation, and acid resistance. Less common virulence factors were proteases (50 %), deoxyribonucleases (50 %), enterotoxins (63%), and lipopolysaccharide (70%). The virulence factors were found mostly among the S. aureus isolates. Conclusions. Pseudomonas spp., Escherichia coli, Salmonella spp., and Staphylococcus aureus were implicated in neonatal infections in the center and most of them were resistant to conventional antibiotics. The organisms showed marked virulence and multidrug resistance properties. Levofloxacin, a fluoroquinolone, had superior activity on the isolates compared to other antibiotics used in the study
    corecore