10 research outputs found

    Gaseous Sf3 +: An Efficient Electrophilic Monofluorinating Agent For Five-membered Heteroaromatic Compounds

    No full text
    Reactions of gaseous SF3 + ions with furan, thiophene, pyrrole, and several of their alkyl derivatives were performed via MS2 experiments and found to occur readily both by electron abstraction and F+ transfer. Then, by performing MS3 experiments, the F+ transfer products - the protonated monofluorinated molecules - were mass-selected and deprotonated by a second reaction with a stronger base. F+ transfer from gaseous SF3 + followed by deprotonation promotes therefore C-H by C-F replacement in five-membered heteroaromatic compounds and the efficient gas-phase synthesis of their neutral monofluorinated derivatives.651339203925Liebman, J.F., Greenberg, A., Dolbier, W.R., (1988) Fluorine Containing Molecules: Structure, Reactivity, Synthesis and Applications, , VCH: New YorkWalker, S.B., (1989) Fluorine Compounds as Agrochemicals, , Fluorochem Limited: GlossopBanks, R.E., (1979) Organofluorine Chemicals and Their Industrial Applications, , Ellis Horwood: ChichesterKirk, K.L., (1991), 9 B. , Biochemistry of the Elements SeriesFrieden, E., Ed.Plenum Press: New YorkRozen, S., (1996) Acc. Chem. Res., 29, p. 243Wilkinson, J.A., (1992) Chem Rev., 92, p. 505Cartwright, M.M., Woolf, A.A., (1984) J. Fluorine Chem., 25, p. 263Cartwright, M.M., Woolf, A.A., (1981) J. Fluorine Chem., 19, p. 10Chrite, K.O., (1984) J. Fluorine Chem., 25, p. 269Chrite, K.O., (1983) J. Fluorine Chem., 22, p. 519Rozen, S., Gal, C., (1984) Tetrahedron Lett., 25, p. 449Rozen, S., Gal, C., (1988) J. Org. Chem., 53, p. 2803Hewitt, C.D., Silvester, M.J., (1988) Aldrichimica Acta, 21, p. 3Moissan, (1986) J. Fluorine Chem., p. 33Olah, G.A., Welch, J.T., Vankar, Y.D., Nojima, M., Kerekes, I., Olah, J.A., (1979) J. Org. Chem., 44, p. 3872Mascaretti, O., (1993) Aldrichimica Acta, 26, p. 47Burger, K., Helmreich, B., (1994) Heterocycles, 39, p. 819Qiu, Z., Burton, D.J., (1994) Tetrahedron Lett., 35, p. 4319Sham, H.L., Betebenner, D.A., (1991) J. Chem. Soc., Chem. Commun., p. 1135Shi, G., Sclosser, M., (1993) Tetrahedron, 49, p. 1445Kassmi, A.E., Fache, F., Lemaire, M., (1994) Synth. Commun., 24, p. 95Cerichelli, G., Crestoni, M.E., Fornarini, S., (1990) Gazz. Chim. Ital., 120, p. 749Moraes, L.A.B., Pimpim, R.S., Eberlin, M.N., (1996) J. Org. Chem., 61, p. 8726Moraes, L.A.B., Gozzo, F.C., Eberlin, M.N., Vainiotalo, P., (1997) J. Org. Chem., 62, p. 5096Brodbelt, J.S., (1997) Mass Spectrom. Rev., 16, p. 91Gozzo, F.C., Moraes, L.A.B., Sparrapan, R., Eberlin, M.N., (1998) J. Org. Chem., 63, p. 4889Chou, P.K., Thoen, K.K., KenttÀmaa, H.I., (1998) J. Org. Chem., 63, p. 4470Williamson, B.L., Creaser, C.S., (1998) Eur. Mass Spectrom., 4, p. 103Gerbaux, P., Haverbeke, Y.V., Flammang, R., (1998) Int. J. Mass Spectrom., 184, p. 39Mendes, M.A., Moraes, L.A.B., Sparrapan, R., Eberlin, M.N., Kostiainen, R., Kotiaho, T., (1998) J. Am. Chem. Soc., 120, p. 7869Takashima, K., Riveros, J.M., (1998) Mass Spectrom. Rev., 17, p. 409Wang, F., Tao, W.A., Gozzo, F.C., Eberlin, M.N., Cooks, R.G., (1999) J. Org. Chem., 64, p. 3213Cacace, F., De Petris, G., Pepi, F., Rosi, M., Sgamellotti, A., (1999) Angew. Chem., Int. Ed., 38, p. 2408Sharifi, M., Einhorn, J., (1999) Int.J. Mass Spectrom., 190-191, p. 253Frank, A.J., Turecek, F., (1999) J. Phys. Chem. A, 103, p. 5348Brönstrup, M., Schröder, D., Schwarz, H., Organometallics (1999), 18, p. 1939Sparrapan, R., Mendes, M.A., Carvalho, M., Eberlin, M.N., (2000) Chem. Eur. J., 6, p. 321Moraes, L.A.B., Eberlin, M.N., (2000) Chem. Eur. J., 6, p. 897Dillard, J.G., Troester, J.H., (1975) J. Phys. Chem., 79, p. 2455Javahery, G., Becker, H., Korobov, M.V., Farber, M., Cooper, D., Bohme, D.K., (1994) Int. J. Mass Spectrom. Ion Proc., 133, p. 73Cipollini, R., Crestoni, M.E., Fornarini, S., (1997) J. Am. Chem. Soc., 119, p. 9499Grandinetti, F., Pepi, F., Ricci, A., (1996) Chem. Eur. J., 2, p. 495Aschi, M., Grandinetti, F., Vinciguerra, V., (1998) Chem. Eur. J., 4, p. 2366Sparrapan, R., Mendes, M.A., Ferreira, I.P.P., Eberlin, M.N., Santos, C., Nogueira, J.C., (1998) J. Phys. Chem. A, 102, p. 5189Sparrapan, R., Mendes, M.A., Eberlin, M.N., (1999) Int. J. Mass Spectrom. Ion Proc., 182-183, p. 369Wong, P.S.K., Ma, S., Yang, S.S., Cooks, R.G., Gozzo, F.C., Eberlin, M.N., (1997) J. Am. Soc. Mass Spectrom., 8, p. 68noteChriste, K.O., Dixon, D.A., (1992) J. Am. Chem Soc., 114, p. 2978Schwartz, J.C., Wade, A.P., Enke, C.G., Cooks, R.G., (1990) Anal. Chem., 62, p. 1809Eberlin, M.M., (1997) Mass Spectrom. Rev., 16, p. 113Juliano, V.F., Gozzo, F.C., Eberlin, M.N., Kascheres, C., Lago, C.L., (1996) Anal. Chem., 68, p. 1328Tiernan, T.O., Futrell, J.H., (1968) J. Phys. Chem., 72, p. 3080Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (1998), Gaussian 98, Revision A.6, Gaussian, Inc., Pittsburgh, PAMÞller, C., Plesset, M.S., (1934) Phys. Rev., 46, p. 618Gill, P.M.W., Johnson, B.G., Pople, J.A., (1992) Chem. Phys. Lett., 197, p. 499Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098Schaftenaar, G., (1992) QCPE Bull., 12, p. 3. , http:// www.caos.kun.nl/~schaft/molden/molden.htmlBosshard, P., Eugster, C.H., (1966), 7, p. 377. , Advances in Heterocyclic ChemistryKatritzky,A.R., Boulton,A.J., Eds.Academic Press: New YorkGronowitz, S., (1963), 2, p. 1. , Advances in Heterocyclic ChemistryKatritzky,A.R., Ed.Academic Press: New YorkAlan Jones, R., (1970), 11, p. 384. , Advances in Heterocyclic ChemistryKatritzky,A.R., Boulton,A.J., Eds.Academic Press: New YorkHealth, T.G., Allison, J., Watson, J.T., (1991) J. Am. Chem. Soc., 2, p. 27

    Analysis Of Metabolic Changes In Plant Pathosystems By Imprint Imaging Desi-ms

    No full text
    The response of plants to microbial pathogens is based on the production of secondary metabolites. The complexity of plant-pathogen interactions makes their understanding a challenging task for metabolomic studies requiring powerful analytical approaches. In this paper, the ability of ambient mass spectrometry to provide a snapshot of plant metabolic response to pathogen invasion was tested. The fluctuations of glycoalkaloids present in sprouted potatoes infected by the phytopathogen Pythium ultimum were monitored by imprint imaging desorption electrospray ionization mass spectrometry (DESI-MS). After 8 d from the inoculation, a decrease of the relative abundance of potato glycoalkaloids α-solanine (m/z 706) and α-chaconine (m/z 722) was observed, whereas the relative intensity of solanidine (m/z 398), solasodenone (m/z 412), solanaviol (m/z 430), solasodiene (m/z 396), solaspiralidine (m/z 428), Îł-solanine/Îł-chaconine (m/z 560), ÎČ-solanine (m/z 706), and ÎČ-chaconine (m/z 722) increased. The progression of the disease, expressed by the development of brown necrotic lesions on the potato, led to the further decrease of all the glycoalkaloid metabolites. Therefore, the applicability of imprint imaging DESI-MS in studying the plant metabolic changes in a simple pathosystem was demonstrated with minimal sample preparation.264641648Freeman, B.C., Beattie, G.A., The plant health instructor (2008) Am. Phytopathol. Soc. St. Paul.Gunatilaka, L.A., Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence (2006) J. Nat. Prod., 69, pp. 509-526. , 1:CAS:528:DC%2BD28Xit1Wmt7o%3DLĂłpez-Gresa, M.P., Maltese, F., BellĂ©s, J.M., Conejero, V., Kim, H.K., Metabolic response of tomato leaves upon different plant-pathogen interactions (2010) Phytochem. Anal., 21, pp. 89-94Sana, T.R., Fischer, S., Wohlgemuth, G., Katrekar, A., Jung, K., Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonasoryzae pv oryzae (2010) Metabolomics, 6, pp. 451-465. , 1:CAS:528:DC%2BC3cXosV2ru70%3DCho, K., Kim, Y., Wi, S.J., Seo, J.B., Kwon, J., Chung, J.H., Park, K.Y., Nam, M.H., Nontargeted metabolite profiling in compatible pathogen-inoculated tobacco (Nicotiana tabacum L cv Wisconsin 38) using UPLC-Q-TOF/MS (2012) J. Agric. Food Chem., 60 (44), pp. 11015-11028Pushpa, D., Yogendra, K.N., Gunnaiah, R., Kushalappa, A.C., Murphey, A., Identification of late blight resistance related metabolites and genes in potato through nontargeted metabolomics (2014) Plant Mol. Biol. Rep., 32, pp. 584-595. , 1:CAS:528:DC%2BC2cXivF2jsLY%3DAliferis, K.A., FT-ICR/MS and GC-EI/MS metabolomics networking unravels global potato sprout's responses to Rhizoctonia solani infection (2012) PLoS One, 7, p. e42576Simon, C., Langlois-Meurinne, L., Bellvert Garmier, M., Didierlaurent, L., Massoud, K., Chaouch, S., Marie, A., Saindrenan, G., The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv tomato is dependent on the oxidative burst (2010) J. Exp. Bot., 61 (12), pp. 3355-33570. , 1:CAS:528:DC%2BC3cXptVymsbs%3DWhipps, J.M., Lumsden, R.D., Biological control of Pythium species (1991) BioSci. Technol., 1, pp. 75-90Wu, C., Dill, A.L., Eberlin, L.S., Cooks, R.G., Ifa, D.R., Mass spectrometry imaging under ambient conditions (2013) Mass Spectrom. Rev., 32, pp. 218-243. , 1:CAS:528:DC%2BC3sXlvFWguro%3DMonge, M.E., Harris, G.A., Dwivedi, P., FernĂĄndez, F.M., Mass spectrometry: Recent advances in direct open air surface sampling/ionization (2013) Chem. Rev., 113, pp. 2269-2308. , 1:CAS:528:DC%2BC3sXms1Oksg%3D%3DWu, C., Ifa, D.R., Manicke, N.E., Cooks, R.G., Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization (2010) Analyst, 135, pp. 28-32. , 1:CAS:528:DC%2BD1MXhsFClt7fFJackson, A.U., Tata, A., Wu, C., Perry, R.H., Haas, G., West, L., Cooks, R.G., Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry (2009) Analyst, 134, pp. 867-874. , 1:CAS:528:DC%2BD1MXkslartrY%3DNemes, P., Vertes, A., Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry (2007) Anal. Chem., 79, pp. 8098-8106. , 1:CAS:528:DC%2BD2sXhtVyjtb%2FKIfa, D.R., Srimany, A., Eberlin, L.S., Naik, H.R., Bhat, V., Cooks, R.G., Pradeep, T., Tissue imprint imaging by desorption electrospray ionization mass spectrometry (2011) Anal. Methods, 3, pp. 1910-1912. , 1:CAS:528:DC%2BC3MXhtFKqsbfOTata, A., Fernandes, A.M., Santos, V.G., Alberici, R.M., Araldi, D., Parada, C.A., Braguini, W., Eberlin, M.N., Nano-assisted laser desorption-ionization-MS imaging of tumors (2012) Anal. Chem., 84, pp. 6341-6345Tata, A., Montemurro, C., Porcari, M.A., Silva, K.C., Lopes De Faria, J.B., Eberlin, M.N., Spatial distribution of theobromine-a low MW drug-in tissues via matrix-free NALDI-MS imaging (2014) Drug Test Anal., 6, pp. 949-952. , 1:CAS:528:DC%2BC2cXht1Wkt7zNCaprioli, R.M., Farmer, T.B., Gile, J., Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS (1997) Anal. Chem., 69, pp. 4751-4760. , 1:CAS:528:DyaK2sXntVagtLc%3DMasumori, N., Thomas, T.Z., Chaurand, P., Case, T., Paul, M., Kasper, S., Caprioli, R.M., Matusik, R.J., A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential (2001) Cancer Res., 61, pp. 2239-2249. , 1:CAS:528:DC%2BD3MXit1OgtrY%3DCabral, C.E., Mirabelli, M.F., Perez, C.J., Ifa, D.R., Blotting assisted by heating and solvent extraction for DESI-MS Imaging (2013) J. Am. Soc. Mass Spectrom., 24, pp. 956-965. , 1:CAS:528:DC%2BC3sXnsVWmsrc%3DHemalatha, R.G., Pradeep, T., Understanding the molecular signatures in leaves and flowers by desorption electrospray ionization mass spectrometry (DESI-MS) imaging (2013) J. Agric. Food Chem., 61, pp. 7477-7487. , 1:CAS:528:DC%2BC3sXhtVyrt7bFManicke, N.E., Kistler, T., Ifa, D.R., Cooks, R.G., Ouyang, Z., High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry (2009) J. Am. Soc. Mass Spectrom., 20, pp. 321-325. , 1:CAS:528:DC%2BD1MXhtFyqtr4%3DMachado, R.M.D., Toledo, M.C.F., Garcia, L.C., Effect of light and temperature on the formation of glycoalkaloids in potato tubers (2007) Food Control, 18, pp. 503-508. , 1:CAS:528:DC%2BD28XhtFSrur%2FJNema, P.K., Ramayya, N., Duncan, E., Niranjan, K., Potato glycoalkaloids: Formation and strategies for mitigation (2008) J. Sci. Food Agric., 88, pp. 1869-1881. , 1:CAS:528:DC%2BD1cXhtVehurvJFriedman, M., Dao, L., Distribution of glycoalkaloids in potato plants and commercial potato products (1992) J. Anal. Food Chem., 40, pp. 419-423. , 1:CAS:528:DyaK38Xht1Ohu7g%3DHa, M., Kwak, J.H., Kim, Y., Zee, O.P., Direct analysis for the distribution of toxic glycoalkaloids in potato tuber tissue using matrix-assisted laser desorption/ionization mass spectrometric imaging (2012) Food Chem., 133, pp. 1155-1162. , 1:CAS:528:DC%2BC38XlsFyntL8%3DCaldwell, K.A., Grosjean, O.K., Henika, P.A., Friedman, M., Hepatic ornithine decarboxylase induction by potato glycoalkaloids in rats (1991) Food Chem. Toxicol., 29, pp. 531-535. , 1:CAS:528:DyaK3MXmsV2rtrk%3DFriedman, M., Rayburn, J.R., Bantle, J.A., Developmental toxicology of potato alkaloids in the frog embryo teratogenesis assay-Xenopus (FETAX) (1991) Food Chem. Toxicol., 29, pp. 537-547. , 1:CAS:528:DyaK3MXmsFSju7s%3DCahill, M.G., Caprioli, G., Vittori, S., James, K.J., Elucidation of the mass fragmentation pathways of potato glycoalkaloids and aglycons using Orbitrap mass spectrometry (2010) J. Mass Spectrom., 45, pp. 1019-1025. , 1:CAS:528:DC%2BC3cXhtF2msbrJRokka, V.M., Laurila, J., Tauriainen, A., Laakso, I., Larkka, J., Metzler, M., PietilĂ€, L., Glycoalkaloid aglycone accumulations associated with infection by Clavibacter michiganensis ssp sepedonicus in potato species Solanumacaule and Solanumtuberosum and their interspecific somatic hybrids (2005) Plant Cell Rep., 23, pp. 683-691. , 1:CAS:528:DC%2BD2MXitVaht74%3DKuć, J.A., Metabolites accumulating in potato tubers following infection and stress (1973) Teratology, 8, pp. 333-338Rayburn, J.R., Bantle, J.A., Friedman, M., Role of carbohydrate side chains of potato glycoalkaloids in developmental toxicity (1994) J. Agric. Food Chem., 42, pp. 1511-1515. , 1:CAS:528:DyaK2cXksFKisLs%3DOsbourn, A., Saponins and plant defense-a soap story (1996) Trends Plant Sci., 1, pp. 4-9Oda, Y., Saito, K., Ohara-Takada, A., Mori, M., Hydrolysis of the potato glycoalkaloid alpha-chaconine by filamentous fungi (2002) J. Biosci. Bioeng., 94, pp. 321-325. , 1:CAS:528:DC%2BD3sXhtFSitg%3D%3DKuc, J., Steroid glycoalkaloids and related compounds as potato quality factors (1982) Am. Potato J., 61, pp. 123-138Wiseman, J.M., Ifa, D.R., Zhu, Y.X., Kissinger, C.B., Manicke, N.E., Kissinger, P.T., Cooks, R.G., Mass spectrometry across the sciences special feature: Desorption electrospray ionization mass spectrometry: Imaging drugs and metabolites in tissues (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 18120-18125Vismeh, R., Waldon, D.J., Teffera, Y., Zhao, Z.Y., Localization and quantification of drugs in animal tissues by use of desorption electrospray ionization mass spectrometry imaging (2012) Anal. Chem., 84, pp. 5439-5445. , 1:CAS:528:DC%2BC38XnvVSnurs%3DEllis, S.R., Bruinen, A.L., Heeren, R.M.A., A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry (2014) Anal. Bioanal. Chem., 406, pp. 1275-1289. , 1:CAS:528:DC%2BC3sXhvVGgt73

    Sequence and structure-activity relationship of a scorpion venom toxin with nitrergic activity in rabbit corpus cavernosum

    No full text
    An alpha-toxin responsible for nitric oxide (NO) release in rabbit corpus cavernosum (RbCC) was isolated from Tityus serrulatus venom (TSV). The isolated peptide (molecular mass of 7427.66+/-0.15 Da) was identified as Ts3 after determination of Cys residues, N-terminal amino acid analysis, and proteolytic peptide mapping. Ts3 (30 nM) markedly relaxed the RbCC; this response was blocked by the NO synthesis inhibitor N-omega-nitro-L-arginine methyl ester (100 muM) and the Na+ channel blocker tetrodotoxin (100 nM). Synthetic peptides based on either Ts3 (P1-16, P17-32, P33-48, P49-64, P9-24, P25-40, P41-56, YGLPDKVPTKT) or Bukatoxin (isolated from Buthus martensi Karsch scorpion venom) sequence (Buka11, Buka11-B, PDKVP, PDSEP) were assayed. These peptides slightly relaxed the RbCC, and such an effect was independent of Na+ channel activation or NO release. Our results indicate that Ts3 exerts nitrergic actions and contributes to the relaxing activity of TSV in RbCC, thus providing a valuable tool to investigate the mechanisms underlying nerve activation in erectile tissues, because NO released from nitrergic fibers plays a key role in the erectile process. Our findings revealed the key importance of the Ts3 structure three-dimensional conformation maintenance for biological activity, because linear peptide sequences neither presented substantial relaxations nor was this effect related to nitrergic activity17348548

    Synthesis of substituted benzamides as anti-inflammatory agents that inhibit preferentially cyclooxygenase 1 but do not cause gastric damage

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOParsalmide (5-amino-N-butyl-2-(2-propynyloxy) benzamide) (5a), is a non-steroidal anti-inflammatory drug (NSAID), commercialised in Italy until 1985 with the brand name of Synovial(R), that has been widely used to treat arthritic patient. In addition, it was shown to spare gastric mucosa. Here we have synthesised a series of novel substituted benzamides, related to Parsalmide, and have evaluated their activity in vitro on COX-1 and COX-2 as well as in vivo in the carrageenin-induced rat paw edema, a classical in vivo anti-inflammatory assay. Compounds 5b, 11a and 11b, which showed a favourable profile in vitro and in vivo, were screened in comparison with Parsalmide for gastrointestinal (GI) tolerability in vivo in the rat. Results obtained showed that Parsalmide and compound 11b inhibited both COX-1 and COX-2 in vitro as well as they were active in vivo. Both compounds were devoid of gastric effect at the efficacious dose. In addition, both prevented indomethacin-induced gastric damage. Thus, these compounds may guide the definition of a new leading structure with anti-inflammatory activity that may allow designing new safer NSAIDs366517530FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOsem informaçã

    Untangling the Metabolic Reprogramming in Brain Cancer: Discovering Key Molecular Players Using Mass Spectrometry

    No full text
    corecore