206 research outputs found

    Humidity effects on tip-induced polarization switching in lithium niobate

    Full text link
    Interest to ferroelectric materials has been increased significantly in last decades due to development of new generation of nonlinear optical and data storage devices. Scanning probe microscopy (SPM) can be used both for study of domain structures with nanoscale spatial resolution and for writing the isolated nanodomains by local application of the electric field. Tip-induced switching in the ambient still needs experimental investigations and theoretical explorations. Here we studied influence of the value of relative humidity in the SPM chamber on the process of tip-induced polarization switching. This phenomenon was attributed to existing of the water meniscus between tip and the sample surface in humid atmosphere. Presented results are important for further complex investigations of the ferroelectric materials and their applications.Comment: 15 pages, 5 figures, Submitted to Applied Physics Letter

    Orientation, substructure, and optical properties of rutile films

    Get PDF
    The orientation, optical properties, and substructure of rutile films prepared by thermal and pulsed photon assisted oxidation of single crystal Ti films were investigated by transmission electron micros copy, optical spectroscopy, and high energy electron diffractionyesBelgorod State Universit

    Electrical properties and local domain structure of LiNbO3 thin film grown by ion beam sputtering method

    Full text link
    The nanocrystalline ferroelectric LiNbO3 films on (001) Si substrates with the random orientation of polycrystalline grains and the predominance of the grains with lateral orientation of the polar axis were grown using the ion beam sputtering method. The remanent polarization and the coercive field are 12 μC/cm2 and 29 kV/cm, respectively. The thermal annealing leads to the coarsening of the grains. The appearance of the "local texture," which gives rise to the unipolarity of the heterostructures caused by the predominance of the one direction in the vertical component of the spontaneous polarization, is investigated. © The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg

    Nanodomain structures formation during polarization reversal in uniform electric field in strontium barium niobate single crystals

    Full text link
    We have studied the ferroelectric nanodomain formation in single crystals of strontium barium niobate Sr 0.61Ba 0.39Nb 2O 6 using piezoelectric force microscopy and Raman confocal microscopy. The nanodomain structures have been created by application of the uniform electric field at room temperature. Four variants of nanodomain structure formation have been revealed: (1) discrete switching, (2) incomplete domain merging, (3) spontaneous backswitching, and (4) enlarging of nanodomain ensembles. Kinetics of the observed micro- and nanodomain structures has been explained on the basis of approach developed for lithium niobate and lithium tantalate crystals. © 2012 American Institute of Physics

    Thermal Radiation from an Electron with Schwarzschild-Planck Acceleration

    Full text link
    A charge accelerating in a straight line following the Schwarzschild-Planck moving mirror motion emits thermal radiation for a finite period. Such a mirror motion demonstrates quantum purity and serves as a direct analogy of a black hole with unitary evolution and complete evaporation. Extending the analog to classical electron motion, we derive the emission spectrum, power radiated, and finite total energy and particle count, with particular attention to the thermal radiation limit. This potentially opens the possibility of a laboratory analog of black hole evaporation.Comment: 9 pages, 9 figure

    Orientation, substructure, and optical properties of rutile films

    Get PDF
    The orientation, optical properties, and substructure of rutile films prepared by thermal and pulsed photon assisted oxidation of single crystal Ti films were investigated by transmission electron micros copy, optical spectroscopy, and high energy electron diffractionyesBelgorod State Universit

    Nanodomain structures formation during polarization reversal in uniform electric field in strontium barium niobate single crystals

    Get PDF
    We have studied the ferroelectric nanodomain formation in single crystals of strontium barium niobate Sr 0.61Ba 0.39Nb 2O 6 using piezoelectric force microscopy and Raman confocal microscopy. The nanodomain structures have been created by application of the uniform electric field at room temperature. Four variants of nanodomain structure formation have been revealed: (1) discrete switching, (2) incomplete domain merging, (3) spontaneous backswitching, and (4) enlarging of nanodomain ensembles. Kinetics of the observed micro- and nanodomain structures has been explained on the basis of approach developed for lithium niobate and lithium tantalate crystals. © 2012 American Institute of Physics
    corecore