7 research outputs found

    Synthesis and biological evaluation of imidazolo[2,1-b]benzothiazole derivatives, as potential p53 inhibitors

    No full text
    Since activation of p53 in response to cytotoxic stress may have proapoptotic or protective effects depending on the nature of the injury, inhibitors of p53 may have therapeutic interest as modulators of chemotherapy toxicity or efficacy. In an attempt to identify novel p53 inhibitors, a quality collection of compounds structurally related to pifithrin-\u3b2 were designed and synthesized as potential inhibitors of p53. The biochemical and biological evaluations supported that compounds of the tetrahydrobenzothiazole series were inhibitors of the p53 transcriptional activity and were effective in enhancing paclitaxel-induced apoptosis. In contrast, in spite of the increased cytotoxic potency, selected compounds of the benzothiazole series were not able to modulate the transcriptional activity of p53, as indicated by lack of change of p21 expression. The therapeutic interest of the compounds of the former series in combination with taxanes was confirmed in a human tumor xenograft model

    In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State Magic-Angle-Spinning NMR

    No full text
    The feasibility of using solid-state MAS NMR for in situ structural characterization of the LR11 (sorLA) transmembrane domain in native Escherichia coli (E. coli) membranes is presented. LR11 interacts with the human amyloid precursor protein (APP), a central player in the pathology of Alzheimer's disease. The background signals from E. coli lipids and membrane proteins had only minor effects on LR11 TM resonances. Approximately 50% of the LR11 TM residues were assigned by using 13C PARIS data. These assignments allow comparisons of the secondary structure of LR11 TM in native membrane environments and in commonly used membrane mimics (e.g. micelles). In situ spectroscopy bypasses several obstacles in the preparation of membrane proteins for structural analysis, and offers an opportunity to investigate the consequences of membrane heterogeneity, bilayer asymmetry, chemical gradients, and macromolecular crowding on the protein structure

    Synthesis and Reactivity of 2-(Carboxymethyl)aziridine Derivatives

    No full text
    corecore