31 research outputs found
Model for the formation of single-thread rivers in barren landscapes and implications for pre-Silurian and martian fluvial deposits
Flume experiments and field observations show that bank vegetation promotes the formation of narrow and deep single‐thread channels by strengthening riverbanks. Consistent with this idea, the pre‐Silurian fluvial record generally consists of wide monotonous sand bodies often interpreted as deposits of shallow braided rivers, whereas single‐thread rivers with muddy floodplains become more recognizable in Silurian and younger rocks. This shift in the architecture of fluvial deposits has been interpreted as reflecting the rise of single‐thread rivers enabled by plant life. The deposits of some single‐thread rivers, however, have been recognized in pre‐Silurian rocks, and recent field studies have identified meandering rivers in modern unvegetated environments. Furthermore, single‐thread‐river deposits have been identified on Mars, where macroscopic plants most likely never evolved. Here, we seek to understand the formation of those rarely recognized and poorly characterized single‐thread rivers in unvegetated landscapes. Specifically, we quantitatively explore the hypothesis that cohesive muddy banks alone may enable the formation of single‐thread rivers in the absence of plants. We combine open‐channel hydraulics and a physics‐based erosion model applicable to a variety of bank sediments to predict the formation of unvegetated single‐thread rivers. Consistent with recent flume experiments and field observations, results indicate that single‐thread rivers may form readily within muddy banks. Our model has direct implications for the quantification of riverbank strengthening by vegetation, understanding the hydraulic geometry of modern and ancient unvegetated rivers, interpreting pre‐Silurian fluvial deposits, and unraveling the hydrologic and climate history of Mars
Sedimentology and stratigraphy of the type section of the Pennsylvanian Boss Point Formation, Joggins Fossil Cliffs, Nova Scotia, Canada
The 1125-m-thick type section of the Pennsylvanian Boss Point Formation is well exposed along the shore of the Bay of Fundy in Nova Scotia. We provide the first comprehensive account of the entirety of this formation, which comprises nearly one-third of the stratigraphic thickness of the Joggins Fossil Cliffs UNESCO World Heritage Site. The basal Chignecto Bay Member (0–91.5 m) is composed of redbeds, single-storey channel bodies with northerly paleoflow, and thin palustrine limestones. The middle Ward Point Member (91.5–951.7 m) contains up to 16 megacycles composed of alternations between thick packages of braided fluvial sandstone and fine-grained deposits. Although regional studies of the Boss Point Formation suggest that the fine-grained deposits are largely composed of lacustrine sediments, these intervals consist largely of poorly drained and well-drained floodplain deposits in the type section. The facies variations and southeast-directed paleoflow in the Ward Point Member record modest uplift associated with the growth of the salt-cored Minudie Anticline. The North Reef Member (951.7–1125 m) is composed of redbeds and two distinctive multistorey channel bodies. This uppermost member records a shift to more arid, oxidizing conditions, was the precursor to a major phase of salt withdrawal, and represents a transition to the overlying Little River Formation. The sedimentological framework, revised stratigraphy, and detailed measured section and map will provide a foundation for future study of this remarkable Pennsylvanian exposure
Model for the formation of single-thread rivers in barren landscapes and implications for pre-Silurian and martian fluvial deposits
Flume experiments and field observations show that bank vegetation promotes the formation of narrow and deep single‐thread channels by strengthening riverbanks. Consistent with this idea, the pre‐Silurian fluvial record generally consists of wide monotonous sand bodies often interpreted as deposits of shallow braided rivers, whereas single‐thread rivers with muddy floodplains become more recognizable in Silurian and younger rocks. This shift in the architecture of fluvial deposits has been interpreted as reflecting the rise of single‐thread rivers enabled by plant life. The deposits of some single‐thread rivers, however, have been recognized in pre‐Silurian rocks, and recent field studies have identified meandering rivers in modern unvegetated environments. Furthermore, single‐thread‐river deposits have been identified on Mars, where macroscopic plants most likely never evolved. Here, we seek to understand the formation of those rarely recognized and poorly characterized single‐thread rivers in unvegetated landscapes. Specifically, we quantitatively explore the hypothesis that cohesive muddy banks alone may enable the formation of single‐thread rivers in the absence of plants. We combine open‐channel hydraulics and a physics‐based erosion model applicable to a variety of bank sediments to predict the formation of unvegetated single‐thread rivers. Consistent with recent flume experiments and field observations, results indicate that single‐thread rivers may form readily within muddy banks. Our model has direct implications for the quantification of riverbank strengthening by vegetation, understanding the hydraulic geometry of modern and ancient unvegetated rivers, interpreting pre‐Silurian fluvial deposits, and unraveling the hydrologic and climate history of Mars
Geology of the late Miocene south-eastern Volterra Basin (Northern Apennines, Italy)
We present a 1:10,000 scale geological map for the south-eastern sector of the Volterra Basin
(Northern Apennines, Italy), together with supporting stratigraphic-structural data. The
Volterra Basin consists of a major structural depression within the Northern Apennines
hinterland, NNW-SSE-oriented and filled with more than 2000 m of late Miocene-
Quaternary deposits. Its south-eastern sector is classically considered as a type area for late
Tortonian non-marine strata, here mapped and refined in terms of internal stratigraphy
adopting a scheme of depositional and lithostratigraphic units. Stratigraphic assessments
helped in redefining the character of the lower boundary of the non-marine succession, as
well as in mapping a newly recognized angular unconformity. Deformation structures
affecting the basin fill include blind normal faults rooted to a deep detachment, outcropscale
transtensional faults and clusters of gentle folds. Faults and folds appear to be
kinematically linked. Our structural observations largely agree with those present in the
literature, supporting a model of post-orogenic crustal stretching
A sedimentary model for early Palaeozoic fluvial fans, Alderney Sandstone Formation (Channel Islands, UK)
none2noneIelpi, Alessandro; Ghinassi, MassimilianoIelpi, Alessandro; Ghinassi, Massimilian
An outer ramp to basin plain transect: Interacting pelagic and calciturbidite deposition in the Eocene–Oligocene of the Tuscan Domain, Adria Microplate (Italy)
The interaction of ramps, basin plains and turbidite systems on the scale of tens of km has been rarely observed in fossil examples. Deep marine Eocene-Oligocene beds are exposed in the axial zone of the Chianti Mountains, Italy, and compose a regionally continue stratigraphic succession known as the Scaglia Toscana Formation. The formation was deposited in the Tuscan Domain of the Adria Microplate. This research aims at depicting its depositional architecture and evolution in the type area. Stratigraphic and sedimentologic analyses were performed on a ca. 25. km-long transect that includes depositional systems sectioned both in the down- and along-dip directions. Shaly-carbonate deposits compose a complex of interacting ramps, basin plains and turbidite floor fan systems. Ramp deposits accumulated above the lysocline and in oxic conditions. Basin plain beds were deposited below the lysocline and were subject to episodes of oxygen depletion. Turbidity flows fed elongate fan lobes characterized by poor channelisation. The basin palaeogeography hampered the development of slope apron turbidite systems.The Eocene-Oligocene geodynamic setting of the Tuscan Domain was characterized by the evolution of a peripheral bulge and by the early structuring of a foredeep basin. Syn-sedimentary tectonism acted a primary role in the basin-scale arrangement. However other mechanisms also contributed to the local facies distribution, including the disposition of sediment-source areas and intrabasinal confinement morphologies, as well as relative oscillations of the depositional surface with respect to the lysocline and oxycline. © 2013 Elsevier B.V