37 research outputs found

    Human Brain Anatomy: Prospective, Microgravity, Hemispheric Brain Specialisation and Death of a Person

    Get PDF
    Central nervous system seems to float inside a craniospinal space despite having miniscule amount of CSF. This buoyancy environment seems to have been existing since embryogenesis. This indicates central nervous system always need microgravity environment to function optimally. Presence of buoyancy also causes major flexure to occur at midbrain level and this deep bending area of the brain, better known as greater limbic system seems to regulate brain functions and site for cortical brainwave origin. These special features have made it as a possible site for seat of human soul and form a crucial part in discussion related to death. Besides exploring deep anatomical areas of the brain, superficial cortical areas were also studied. The brainwaves of thirteen clinical patients were analysed. Topographical, equivalent current dipoles and spectral analysis for somatosensory, motor, auditory, visual and language evoked magnetic fields were performed. Data were further analysed using matrix laboratory method for bilateral hemispheric activity and specialization. The results disclosed silent word and picture naming were bilaterally represented, but stronger responses were in the left frontal lobe and in the right parieto-temporal lobes respectively. The sensorimotor responses also showed bilateral hemispheric responses, but stronger in the contralateral hemisphere to the induced sensation or movements. For auditory-visual brainwave responses, bilateral activities were again observed, but their lateralization was mild and could be in any hemisphere. The conclusions drawn from this study are brainwaves associated with cognitive-language, sensorimotor and auditory-visual functions are represented in both hemispheres; and they are efficiently integrated via commissure systems, resulting in one hemispheric specialization. Therefore, this chapter covers superficial, integrative and deep parts of human brain anatomy with emphasis on brainwaves, brain functions, seat of human soul and death

    A Functional MRI and Magneto/Electro Source Imaging Procedure for Cognitive and Pre-surgical Evaluation

    Get PDF
    AbstractAnalysis of normal/pathological brain activity using neuroimaging methods is necessary to avoid operation risks, and the outcome serves as prior information for surgical neuronavigation. We present an fMRI/MEG/EEG-based methodology for tasks demanding mainly sensorimotor and visual/cognitive responses. This consists of carefully selected/designed stimulation paradigms and statistical parametric mapping methods that demonstrate the practicability of these techniques for clinical applications. The results replicate known findings in the brain-imaging field, with the improvement that our analyses are restricted to grey matter tissue. The latter enhance computations, which is advantageous for the massive data analyses that are typical of clinical and radiological functional brain “checkup” services

    Assessing neuroplasticity using magnetoencephalography (MEG) in patient with left-temporo-parietal pilocytic astrocytomas treated with endoscopic surgery

    Get PDF
    Neuroplasticity has been subjected to a great deal of research in the last century. Recently, significant emphasis has been placed on the global effect of localized plastic changes throughout the central nervous system, and on how these changes integrate in a pathological context. The present study aimed to demonstrate the functional cortical reorganization before and after surgery using magnetoencephalography (MEG) in a participant with brain tumor. Results of Visual Evoked Magnetic Field (VEF) based on functional MEG study revealed significantly different of MEG N100 waveforms before and after surgery. Larger and additional new locations for visual activation areas after the surgery were found suggesting neuroplasticity. The present study highlight a physiological plasticity in a teenage brain and the alterations regarding neural plasticity and network remodeling described in pathological contexts in higher-order visual association areas

    Proliferation and Differentiation of Human Hair Follicle Stem Cells on Chitosan-Skin Engineered Template in Vitro

    Get PDF
    Hair follicles repeatedly regress and reconstitute themselves, suggesting the presence of intrinsic tissue stem cells. Among the unique characteristics of adult stem cells isolated from hair follicles is their ability to differentiate into keratinocytes. Study on chitosan skin-engineered templates (SETs) as scaffolds for the proliferation of human fibroblasts have shown the promise of SETs in facilitating skin cell growth in three-dimensional culture. High proliferation in three-dimensional culture using human cells allows the researcher to extensively evaluate the cultivation of desirable cell types on chitosan SETs. Therefore, this study aimed to evaluate the in vitro attachment, proliferation and differentiation of hair follicle stem cells (HFSCs) on a chitosan SETs. HFSCs were isolated from human scalp tissues using collagenase type I prior to propagation in supplemented CnT-07 media. The phenotype of the HFSCs was verified using the markers keratin-15 (K15) and CD200, as detected by immunocytochemical staining. The attachment and proliferation of the HFSCs on the chitosan SETs were evaluated using scanning electron microscopy (SEM), an alamar blue assay and a live/dead assay. Subsequently, the HFSCs were differentiated using CnT-2D differentiation media. The cells’ differentiation was verified using the markers involucrin and keratin-6 (K6), as detected by immunofluorescence staining. The HFSCs were successfully isolated, proliferated and differentiated according to staining positivity and microscopy imaging. HFSCs are able to proliferate and directly differentiate into keratinocytes on a chitosan SETs, which may facilitate their use in regenerative medicine

    Observation of tumour-induced reorganization in structural and functional architecture of the brain in three pre-surgical patients with left frontal-temporal brain tumour: a combination of MEG, DTI and neuropsychological assessment

    Get PDF
    Visual function is mainly located within the bilateral hemisphere of the occipital lobes of the brain. However, our functional magnetoencephalography (MEG) result has demonstrated the reorganization of brain activity in the occipital area in patients with left-sided brain tumour. The results showed that brain laterality changes from bilateral to unilateral activation of the occipital area. Right occipital area (contralateral areas to the tumour), shows increase intensity of activation. Diffusion tensor imaging (DTI) with fibre tracking was performed to further investigate this brain laterality modification and the findings confirmed there is an alteration in the left hemisphere fibre optic tracts. This functional modification and changes of the brain laterality and optic tracts in the brain is suspected to be the result of tumour growth induced changes. The present observation will be discussed in term of the mechanism of tumour induced reorganization and changes with the corroborating evidence from MEG, DTI and neuropsychological assessment

    Intraventricular Squamous Papillary Craniopharygioma.

    Get PDF
    Squamous papillary craniopharyngioma is a distinct entity, and its cytologic features may be misleading. Because of the rarity of this tumor,this case is being reported. with a note on the cytologic features

    Proliferation and Differentiation of Human Hair Follicle Stem Cells on Chitosan-Skin Engineered Template in Vitro

    Get PDF
    Hair follicles repeatedly regress and reconstitute themselves, suggesting the presence of intrinsic tissue stem cells. Among the unique characteristics of adult stem cells isolated from hair follicles is their ability to differentiate into keratinocytes. Study on chitosan skin-engineered templates (SETs) as scaffolds for the proliferation of human fibroblasts have shown the promise of SETs in facilitating skin cell growth in three-dimensional culture. High proliferation in three-dimensional culture using human cells allows the researcher to extensively evaluate the cultivation of desirable cell types on chitosan SETs. Therefore, this study aimed to evaluate the in vitro attachment, proliferation and differentiation of hair follicle stem cells (HFSCs) on a chitosan SETs. HFSCs were isolated from human scalp tissues using collagenase type I prior to propagation in supplemented CnT-07 media. The phenotype of the HFSCs was verified using the markers keratin-15 (K15) and CD200, as detected by immunocytochemical staining. The attachment and proliferation of the HFSCs on the chitosan SETs were evaluated using scanning electron microscopy (SEM), an alamar blue assay and a live/dead assay. Subsequently, the HFSCs were differentiated using CnT-2D differentiation media. The cells’ differentiation was verified using the markers involucrin and keratin-6 (K6), as detected by immunofluorescence staining. The HFSCs were successfully isolated, proliferated and differentiated according to staining positivity and microscopy imaging. HFSCs are able to proliferate and directly differentiate into keratinocytes on a chitosan SETs, which may facilitate their use in regenerative medicine
    corecore