32 research outputs found

    Calibration and accuracy assessment of Leica ScanStation C10 terrestrial laser scanner

    Get PDF
    Requirement of high accuracy data in surveying applications has made calibration procedure a standard routine for all surveying instruments. This is due to the assumption that all observed data are impaired with errors. Thus, this routine is also applicable to terrestrial laser scanner (TLS) to make it available for surveying purposes. There are two calibration approaches: (1) component, and (2) system calibration. With the intention to specifically identify the errors and accuracy of the Leica ScanStation C10 scanner, this study investigates component calibration. Three components of calibration were performed to identify the constant, scale error, accuracy of angular measurement and the effect of angular resolution for distance measurement. The first calibration has been processed using closed least square solutions and has yielded the values of constant (1.2 mm) and scale error (1.000008879). Using variance ratio test (F-Test), angles observation (horizontal and vertical) for Leica C10 scanner and Leica TM5100A theodolite have shown significance difference. This is because the accuracy of both sensors are not similar and these differences are 0.01 and 0.0075º for horizontal and vertical measurements, respectively. Investigation on the resolution setting for Leica C10 scanner has highlighted the drawback of the tilt-and-turn target. Using the highest resolution, Leica Cyclone software only able to recognize the tilt-and-turn target up to 10 m distance compare to 200 m for the black and white target

    A framework of institutional analysis toward an effective inter-state border delimitation and demarcation in Peninsular Malaysia

    Get PDF
    The determination of the inter-state border in Peninsular Malaysia is done through the process of allocation, delimitation, demarcation, and documentation. This process was organized by the Joint Boundary Committee (JBC) with the involvement of several agencies from the state and federal governments, coordinated by the Ministry, starting in 1993. This study analyzes the interaction of JBCs in decision-making and the effectiveness of rules-in-use of JBC formation. Data were collected through questionnaires, interviews, participant observations, and document reviews and then analysed using the Institutional Analysis and Development Framework (IAD) based on content analysis. The rules-in-use in the establishment of the JBC include position rules, boundary rules, choice rules, aggregation rules, scope rules, information rules, and pay-off rules that cannot direct interaction effectively. For enhancement, a configuration of seven types of rules can be used because the analysis results show that seven types of rules have found significant weaknesses in establishing existing JBCs. Therefore, the implementation of the IAD will effectively coordinate the management and administration of the JBC in making decisions to expedite the inter-state border delimitation and demarcation in Peninsular Malaysia in line with the 16th goal of the Sustainable Development Goals

    Estimated relative permittivity of contaminated laterite soil: An empirical model for GPR waves

    Get PDF
    Estimated relative permittivity performed on soil is essential for forecasting the performance of Ground Penetrating Radar (GPR) in an in-depth manner. This study investigated and verified the empirical relationship model between relative permittivity and volumetric water content in soil to predict the relative permittivity of contaminated laterite soil. In this study, a 24-hour measurement involving 800 MHz shielded antenna GPR was carried out in a concrete simulation field tank filled with Terap Red soil (1.5 m x 2.6 m x 1.5 m) at UiTM Perlis, Malaysia. Embedded moisture content probe was simultaneously measured to monitor the response of volumetric water content in contaminated soil in order to formulate an empirical relationship between relative permittivity and moisture content. The GPR data were pre-processed and filtered with Reflexw 7.5, while regression analysis was performed to evaluate the empirical relationship model. The model outcomes were retrieved from a number of cross-validation schemes, including correlation analysis (R2), root mean square error (RMSE), and calibrated Agilent Technologies Automated Vector Analyser (VNA). A third-order polynomial for analysis of variance (ANOVA) best fitted the model with positively strong correlation (R2=0.989, N=24, P < 0.01) and RMSE 0.003< RMSEpredicted < 0.19. Verification of the proposed model using calibrated VNA displayed exceptional agreement between 0.06% comparisons

    Investigation of systematic errors for the hybrid and panoramic scanners

    Get PDF
    The existence of terrestrial laser scanners (TLSs) with capability to provide dense three-dimensional (3D) data in short period of time has made it widely used for the many purposes such as documentation, management and analysis. However, similar to other sensors, data obtained from TLSs also can be impaired by errors coming from different sources. Then, calibration routine is crucial for the TLSs to ensure the quality of the data. Through self-calibration, this study has performed system calibration for hybrid (Leica ScanStation C10) and panoramic (Faro Photon 120) scanner at the laboratory with dimensions 15.5m x 9m x 3m and more than hundred planar targets that were fairly distributed. Four most significant parameters are derived from well-known error sources of geodetic instruments as constant (a0), collimation axis (b0), trunnion axis (b1) and vertical circle index (c0) errors. Data obtained from seven scan-stations were processed, and statistical analysis (e.g. t-test) has shown significant errors for the calibrated scanners

    Terrestrial laser scanners pre-processing: registration and georeferencing

    Get PDF
    Terrestrial laser scanner (TLS) is a non-contact sensor, optics-based instrument that collects three dimensional (3D) data of a defined region of an object surface automatically and in a systematic pattern with a high data collecting rate. This capability has made TLS widely applied for numerous 3D applications. With the ability to provide dense 3D data, TLS has improved the processing phase in constructing complete 3D model, which is much simpler and faster. Pre-processing is one of the phases involved, which consisted of registration and georeferencing procedures. Due to the many error sources occur in TLS measurement, thus, pre-processing can be considered as very crucial phase to identify any existence of errors and outliers. Any presence of errors in this phase can decrease the quality of TLS final product. With intention to discuss about this issue, this study has performed two experiments, which involved with data collection for land slide monitoring and 3D topography. By implementing both direct and indirect pre-processing method, the outcomes have indicated that TLS is suitable for applications which require centimetre level of accuracy

    Rubber-Tree Leaf Diseases Mapping Using Close Range Remote Sensing Images

    Get PDF
    &nbsp;Currently, close-range remote sensing method using drone-based platform which payload compact sensor has been used for monitoring and mapping in the agriculture sector at large area. Thus, this study is deployed drone with a compact sensor to identify the rubber tree leaf diseases based on two groups of a spectral wavelength which are visible (RGB: 0.4 µm – 0.7 µm) and near infrared (NIR: 0.7µm – 2.0 µm), respectively. Spectral obtained from drone-based platform will be validated using ground observation handheld spectroradiometer. Eight types of rubber tree clones leaf at three different conditions (healthy, unhealthy and severe) were randomly selected within the 9.4-hectare Experimental Rubber Plot, Rubber Research Institute of Malaysia (RRIM), Kota Tinggi, Johor whereby consist RRIM 2000 series, RRIM 3000 series, and PB series, respectively. Based on the result, quantitative analysis shows that the f-value is smaller than Critical-one tail for healthy, unhealthy while for severe the f-value is larger than Critical-one tail. The f-value is 2.887 &lt; 4.283 (healthy), 0.002 &lt; 0.264 (unhealthy) and 1.008 &gt; 0.0526, respectively. Thus, this can be concluded that spectral and estimate is equal at the 0.05 significant levels. For qualitative analysis, it shows that each rubber clone tree diseases can be distinguished at the near infrared band for healthy, unhealthy and severe respectively

    Rubber-Tree Leaf Diseases Mapping Using Close Range Remote Sensing Images

    Get PDF
    &nbsp;Currently, close-range remote sensing method using drone-based platform which payload compact sensor has been used for monitoring and mapping in the agriculture sector at large area. Thus, this study is deployed drone with a compact sensor to identify the rubber tree leaf diseases based on two groups of a spectral wavelength which are visible (RGB: 0.4 µm – 0.7 µm) and near infrared (NIR: 0.7µm – 2.0 µm), respectively. Spectral obtained from drone-based platform will be validated using ground observation handheld spectroradiometer. Eight types of rubber tree clones leaf at three different conditions (healthy, unhealthy and severe) were randomly selected within the 9.4-hectare Experimental Rubber Plot, Rubber Research Institute of Malaysia (RRIM), Kota Tinggi, Johor whereby consist RRIM 2000 series, RRIM 3000 series, and PB series, respectively. Based on the result, quantitative analysis shows that the f-value is smaller than Critical-one tail for healthy, unhealthy while for severe the f-value is larger than Critical-one tail. The f-value is 2.887 &lt; 4.283 (healthy), 0.002 &lt; 0.264 (unhealthy) and 1.008 &gt; 0.0526, respectively. Thus, this can be concluded that spectral and estimate is equal at the 0.05 significant levels. For qualitative analysis, it shows that each rubber clone tree diseases can be distinguished at the near infrared band for healthy, unhealthy and severe respectively

    A study about terrestrial laser scanning for reconstruction of precast concrete to support QCLASSIC assessment

    Get PDF
    Nowadays, terrestrial laser scanning shows the potential to improve construction productivity by measuring the objects changes using real-time applications. This paper presents the process of implementation of an efficient framework for precast concrete using terrestrial laser scanning that enables contractors to acquire accurate data and support Quality Assessment System in Construction (QLASSIC). Leica Scanstation C10, black/white target, Autodesk Revit and Cyclone software were used in this study. The results were compared with the dimensional of based model precast concrete given by the company as a reference with the AutoDesk Revit model from the terrestrial laser scanning data and conventional method (measuring tape). To support QLASSIC, the tolerance dimensions of cast in-situ & precast elements is +10 mm /-5 mm. The results showed that the root mean square error for a Revit model is 2.972 mm while using measuring tape is 13.687 mm. The accuracy showed that terrestrial laser scanning has an advantage in construction jobs to support QLASSIC

    Assessment of coastal altimetry data in the South China Sea using multiple frequency approaches

    Get PDF
    With a coastline length extending over 13, 000 km, including the Malaysia region, the South China Sea presents a challenge to retrieve high quality data along the coastal area especially the sea level anomaly and significant wave height. Currently, coastal altimetry is still facing some issues especially when using the low frequency data such as data lacking near the coast, questionable data accuracy since the altimeter footprint contaminated with the land and less coverage of data from the installed ground truth data. This study aims to assess the coastal altimetry data of sea level and significant wave height in the South China Sea using low and high frequency approaches. This study involved deriving data from sea level anomaly (SLA) and significant wave height (SWH) through the use of Prototype for Expertise on AltiKa for Coastal, Hydrology and Ice (PEACHI) for high frequency and Radar Altimeter Database System (RADS) for low frequency of altimetry and ground truth station which is from tide gauge and Acoustic Wave and Current Profiler (AWAC). Comparison between altimetry and ground truth data has been made in order to validate the significant agreement between them. The validation of the data is to evaluate both types of frequencies with respect to the coastal distance. Consequently, the high frequency results for coastal results with a root mean square reliable ±0.14 metre level for the sea level anomaly (SLA) and ±0.18 metre level for significant wave height (SWH) are more reliable. PEACHI distance-to-coast data obtained a sufficient standard residual deviation ranging from 0 cm to 2.87 cm compared to RADS altimetry ranging from 0.08 cm to 14.20 cm. The findings of this study indicate that the coastal altimetry data benefit coastal development, coastal defence, monitoring and tourism by various related agencies

    Investigation of datum constraints effect in terrestrial laser scanner self-calibration

    Get PDF
    The ability to provide rapid and dense three-dimensional (3D) data have made many 3D applications easier. However, similar to other optical and electronic instruments, data from TLS can also be impaired with errors. Self-calibration is a method available to investigate those errors in TLS observations which has been adopted from photogrammetry technique. Though, the network configuration applied by both TLS and photogrammetry techniques are quite different. Thus, further investigation is required to verify whether the photogrammetry principal regarding datum constraints selection is applicable to TLS self-calibration. To ensure that the assessment is thoroughly done, the datum constraints analyses were carried out using three variant network configurations: 1) minimum number of scan stations, 2) minimum number of surfaces for targets distribution, and 3) minimum number of point targets. Via graphical and statistical, the analyses of datum constraints selection have indicated that the parameter correlations obtained are significantly similar
    corecore