256 research outputs found

    An antibody-free LC-MS/MS method for the quantification of intact insulin-like growth factors 1 and 2 in human plasma

    Get PDF
    Insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) are important biomarkers in research and diagnosis of growth disorders. Quantitative analysis is performed using various ligand-binding assays or enzymatic digestion LC-MS/MS methods, whose widespread adoption is hampered by time-consuming sample preparation procedures. We present a simple and fast antibody-free LC-MS/MS method for the quantification of intact IGF-1 and IGF-2 in human plasma. The method requires 50 mu L of plasma and uses fully N-15-labelled IGF-1 as internal standard. It features trifluoroethanol (TFE)-based IGF/IGF-binding protein complex dissociation and a two-step selective protein precipitation workflow, using 5% acetic acid in 80/20 acetone/acetonitrile (precipitation 1) and ice-cold ethanol (precipitation 2). Detection of intact IGF-1 and IGF-2 is performed by means of a Waters XEVO TQ-S triple quadrupole mass spectrometer in positive electrospray ionisation (ESI+) mode. Lower limits of quantification were 5.9 ng/mL for IGF-1 and 8.4 ng/mL for IGF-2. Intra-assay imprecision was below 4.5% and inter-assay imprecision was below 5.8% for both analytes. An excellent correlation was found between nominal and measured concentrations of the WHO reference standard for IGF-1. Comparison with the IDS-iSYS IGF-1 immunoassay showed good correlation (R-2 > 0.97), although a significant bias was observed with the immunoassay giving substantially higher concentrations. The LC-MS/MS method described here allows for reliable and simultaneous quantification of IGF-1 and IGF-2 in plasma, without the need for enzymatic digestion. The method can be readily implemented in clinical mass spectrometry laboratories and has the potential to be adapted for the analysis of different similarly sized peptide hormones

    Residual endogenous corticosteroid production in patients with adrenal insufficiency

    Get PDF
    Objective This study aimed at comparing precursors of endogenous corticosteroid production in patients with primary adrenal insufficiency and in secondary adrenal insufficiency. Design Twenty patients with primary adrenal insufficiency and matched controls and 19 patients with secondary adrenal insufficiency participated in this ancillary analysis of two different studies. Patients and measurements Patients with primary adrenal insufficiency were on stable hydrocortisone and fludrocortisone therapy. Patients with secondary adrenal insufficiency received two different doses of hydrocortisone in a randomized crossover study. Main outcome measures were concentrations of precursors of cortisol and aldosterone measured by LC-MS/MS Results Compared to controls, progressively lower concentrations of the glucocorticoid precursors 11-deoxycortisol, 11-deoxycorticosterone and corticosterone concentrations were found in patients with secondary adrenal insufficiency on lower hydrocortisone dose, secondary adrenal insufficiency on higher hydrocortisone dose and primary adrenal insufficiency, respectively. Half of the primary adrenal insufficient patients showed evidence of residual endogenous cortisol or aldosterone synthesis, as determined by quantifiable 11-deoxycortisol, 11-deoxycorticosterone and corticosterone conce ntrations. In secondary adrenal insufficient patients with higher endogenous cortisol production, as indicated by 11-deoxycortisol concentrations above the median, no increased cortisol exposure was observed both by plasma pharmacokinetic parameters and 24-hour free cortisol excretion in urine. Conclusions Adrenal corticosteroid production is likely to continue during treatment in a considerable percentage of patients with both primary and secondary adrenal insufficiency. In patients with secondary adrenal insufficiency, this synthesis appears to be sensitive to the dose of hydrocortisone. However, the residual corticosteroid concentrations were quantitatively low and its clinical significance remains therefore to be determined

    The protective effect of 1-methyltryptophan isomers in renal ischemia-reperfusion injury is not exclusively dependent on indolamine 2,3-dioxygenase inhibition

    Get PDF
    BACKGROUND AND PURPOSE: Indolamine 2,3-dioxygenase (IDO), an enzyme that catalyses the metabolism of tryptophan, may play a detrimental role in ischemia-reperfusion injury (IRI). IDO can be inhibited by 1-methyl-tryptophan, which exists in a D (D-MT) or L (L-MT) isomer. These forms show different pharmacological effects besides IDO inhibition. Therefore, we sought to investigate whether these isomers can play a protective role in renal IRI, either IDO-dependent or independent. EXPERIMENTAL APPROACH: We studied the effect of both isomers in a rat renal IRI model with a focus on IDO-dependent and independent effects. KEY RESULTS: Both MT isomers reduced creatinine and BUN levels, with D-MT having a faster onset of action but shorter duration and L-MT a slower onset but longer duration (24 h and 48 h vs 48 h and 96 h reperfusion time). Interestingly, this effect was not exclusively dependent on IDO inhibition, but rather from decreased TLR4 signalling, mimicking changes in renal function. Additionally, L-MT increased the overall survival of rats. Moreover, both MT isomers interfered with TGF-β signalling and epithelial-mesenchymal transition. In order to study the effect of isomers in all mechanisms involved in IRI, a series of in vitro experiments was performed. The isomers affected signalling pathways in NK cells and tubular epithelial cells, as well as in dendritic cells and T cells. CONCLUSION AND IMPLICATIONS: This study shows that both MT isomers have a renoprotective effect after ischemia-reperfusion injury, mostly independent of IDO inhibition, involving mutually different mechanisms. We bring novel findings in the pharmacological properties and mechanism of action of MT isomers, which could become a novel therapeutic target of renal IRI

    In matrix derivatization combined with LC-MS/MS results in ultra-sensitive quantification of plasma free metanephrines and catecholamines

    Get PDF
    Plasma-free metanephrines and catecholamines are essential markers in the biochemical diagnosis and follow-up of neuroendocrine tumors and inborn errors of metabolism. However, their low circulating concentrations (in the nanomolar range) and poor fragmentation characteristics hinder facile simultaneous quantification by liquid chromatography and tandem mass spectrometry (LC-MS/MS). Here, we present a sensitive and simple matrix derivatization procedure using propionic anhydride that enables simultaneous quantification of unconjugated l-DOPA, catecholamines, and metanephrines in plasma by LC-MS/MS. Dilution of propionic anhydride 1:4 (v/v) in acetonitrile in combination with 50 μL of plasma resulted in the highest mass spectrometric response. In plasma, derivatization resulted in stable derivatives and increased sensitivity by a factor of 4-30 compared with a previous LC-MS/MS method for measuring plasma metanephrines in our laboratory. Furthermore, propionylation increased specificity, especially for 3-methoxytyramine, by preventing interference from antihypertensive medication (β-blockers). The method was validated according to international guidelines and correlated with a hydrophilic interaction LC-MS/MS method for measuring plasma metanephrines (R2 > 0.99) and high-performance liquid chromatography with an electrochemical detection method for measuring plasma catecholamines (R2 > 0.85). Reference intervals for l-DOPA, catecholamines, and metanephrines in n = 115 healthy individuals were established. Our work shows that analytes in the subnanomolar range in plasma can be derivatized in situ without any preceding sample extraction. The developed method shows improved sensitivity and selectivity over existing methods and enables simultaneous quantification of several classes of amines

    The influence of repeated injections on pharmacokinetics and biodistribution of different types of sterically stabilized immunoliposomes

    Get PDF
    AbstractSterically stabilized immunoliposomes (IL) with diameters of about 135 nm carrying mouse IgG, either coupled directly to the liposome surface, or linked to the terminal ends of grafted poly(ethylene glycol) (PEG) chains by a recently described conjugation procedure (Cyanur-PEG-PE), were intravenously injected into rats and the elimination kinetics and biodistribution were determined and compared with control liposomes. The amounts of conjugated antibodies were about 30 μg/μmol total lipid for all IL. In naive rats, plain pegylated liposomes displayed the longest blood circulation time, whereas the terminal-coupled IL exhibited the fastest elimination. Liposomes containing the underivatized anchor molecules circulate nearly as long as plain pegylated liposomes, indicating that the fast elimination of the IL can be attributed to the presence of antibodies.A second injection of identical liposomes 14 days after the first injection had a considerable influence on the pharmacokinetic parameters of the liposomes. The circulation time of plain pegylated liposomes drastically dropped by half and their uptake by the liver increased concomitantly, indicating that the PEG, upon repeated injection, ceases to function as an efficient barrier reducing opsonization and/or immune reactions. The circulation time of conventional IL was moderately reduced upon a second injection, whereas that of the terminally coupled IL was nearly unaffected. These differences among the IL demonstrate that the pharmacokinetic behavior of IL is strongly dependent on the antibody conjugation site on the liposome. The observed effects of repeated injections were similar for liposomes of 90-nm diameter. The phenomena described may have important implications for the repeated application of IL as drug carriers

    Influence of daily 10-85 mu g vitamin D supplements during pregnancy and lactation on maternal vitamin D status and mature milk antirachitic activity

    Get PDF
    Pregnant and lactating women and breastfed infants are at risk of vitamin D deficiency. The supplemental vitamin D dose that optimises maternal vitamin D status and breast milk antirachitic activity (ARA) is unclear. Healthy pregnant women were randomised to 10 (n 10), 35 (n 11), 60 (n 11) and 85 (n 11) mu g vitamin D-3/d from 20 gestational weeks (GW) to 4 weeks postpartum (PP). The participants also received increasing dosages of fish oil supplements and a multivitamin. Treatment allocation was not blinded. Parent vitamin D and 25-hydroxyvitamin D (25(OH)D) were measured in maternal plasma at 20 GW, 36 GW and 4 weeks PP, and in milk at 4 weeks PP. Median 25(OH)D and parent vitamin D at 20 GW were 85 (range 25-131) nmol/l and 'not detectable (nd)' (range nd-40) nmol/l. Both increased, seemingly dose dependent, from 20 to 36 GW and decreased from 36 GW to 4 weeks PP. In all, 35 mu g vitamin D/d was needed to increase 25(OH)D to adequacy (80-249 nmol/l) in >97 center dot 5 % of participants at 36 GW, while >85 mu g/d was needed to reach this criterion at 4 weeks PP. The 25(OH)D increments from 20 to 36 GW and from 20 GW to 4 weeks PP diminished with supplemental dose and related inversely to 25(OH)D at 20 GW. Milk ARA related to vitamin D-3 dose, but the infant adequate intake of 513 IU/l was not reached. Vitamin D-3 dosages of 35 and >85 mu g/d were needed to reach adequate maternal vitamin D status at 36 GW and 4 weeks PP, respectively

    Urinary Excretion of 6-Sulfatoxymelatonin, the Main Metabolite of Melatonin, and Mortality in Stable Outpatient Renal Transplant Recipients

    Get PDF
    Melatonin is a multifaceted hormone which rises upon the onset of darkness. Pineal synthesis of melatonin is known to be disturbed in patients with end-stage renal disease, but it is not known if its production is restored to normal after successful renal transplantation. We hypothesized that urinary excretion of 6-sulfatoxymelatonin, the major metabolite of melatonin, is lower in renal transplant recipients (RTRs) compared to healthy controls and that this is associated with excess mortality. Urinary 6-sulfatoxymelatonin was measured via LC-MS/MS in 701 stable outpatient RTRs and 285 healthy controls. Median urinary 6-sulfatoxymelatonin in RTR was 13.2 nmol/24 h, which was 47% lower than in healthy controls. Urinary 6-sufatoxymelatonin appeared undetectable in the majority of 36 RTRs with diabetic nephropathy as primary renal disease. Therefore, this subgroup was excluded from further analyses. Of the remaining 665 RTRs, during 5.4 years of follow-up, 110 RTRs died, of whom 38 died due to a cardiovascular cause. In Cox-regression analyses, urinary 6-sulfatoxymelatonin was significantly associated with all-cause mortality (0.60 (0.44–0.81), p = 0.001) and cardiovascular mortality (0.49 (0.29–0.84), p = 0.009), independent of conventional risk factors and kidney function parameters. Based on these results, evaluation and management of melatonin metabolism could be considered for improvement of long-term outcomes in RTRs

    Elevated cerebrospinal fluid glucose levels and diabetes mellitus are associated with activation of the neurotoxic polyol pathway

    Get PDF
    Aims/hypothesis: During hyperglycaemia, some glucose bypasses glycolysis and is metabolised via the potentially neurotoxic polyol pathway, in which glucose is metabolised to sorbitol and fructose. Increased polyol concentrations have been demonstrated in the cerebrospinal fluid (CSF) of neurological patients with and without diabetes mellitus. However, polyol levels in patients without evident neurological abnormalities have not been investigated so far. The aim of this study was to determine CSF polyol concentrations in patients without major neurological disease with normal or elevated CSF glucose concentrations. Methods: This observational cohort study used CSF and plasma analyses, as well as clinical data, from 30 participants of the Anaesthetic Biobank of Cerebrospinal Fluid study. Biomaterial was collected from adult patients scheduled for elective surgery under spinal anaesthesia. CSF polyol concentrations were measured by GC/flame ionisation detector in ten patients with normal CSF glucose levels (group 1), ten patients with elevated CSF glucose levels (group 2) and ten patients with elevated CSF glucose levels and type 2 diabetes (group 3). We compared the concentrations of plasma glucose, CSF glucose, sorbitol and fructose, and CSF polyol/glucose ratios between the three groups, and determined the correlation between plasma glucose levels and CSF glucose, sorbitol and fructose levels. Results: Groups 2 and 3 had significantly higher CSF fructose levels compared with group 1 (p=0.036 and p<0.001, respectively). Group 3 showed significant differences compared with groups 1 and 2 for CSF sorbitol (p<0.001 and 0.036, respectively). Moreover, patients with diabetes had a significantly higher CSF sorbitol/glucose ratio compared with patients without diabetes. There was a strong positive correlation between plasma glucose and CSF glucose, sorbitol and fructose. Finally, age, sex, CSF/plasma albumin ratio and preoperative cognitive function scores were significantly correlated with plasma glucose and CSF glucose, sorbitol and fructose levels. Conclusions/interpretation: Hyperglycaemia causes a proportional increase in polyol concentrations in CSF of patients without major neurological disease. Furthermore, this study provides the first indication of upregulation of the cerebral polyol pathway in patients with diabetes without evident neurological abnormalities. Graphical abstract: [Figure not available: see fulltext.
    • …
    corecore