18 research outputs found

    Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom

    Get PDF
    Hi-C experiments study how genomes fold in 3D, generating contact maps containing features as small as 20 bp and as large as 200 Mb. Here we introduce Juicebox, a tool for exploring Hi-C and other contact map data. Juicebox allows users to zoom in and out of Hi-C maps interactively, just as a user of Google Earth might zoom in and out of a geographic map. Maps can be compared to one another, or to 1D tracks or 2D feature sets.National Institutes of Health (U.S.) (NIH New Innovator Award (1DP2OD008540- 01))National Human Genome Research Institute (U.S.) ((NHGRI) Centers of Excellence in Genomic Science (P50HG006193))NVIDIA CorporationInternational Business Machines Corporation (IBM University Challenge Award)Google (Firm) (Google Research Award)Baylor College of Medicine (McNair Medical Institute Scholar Award)Cancer Prevention and Research Institute of Texas (Scholar Award (R1304))Presidential Early Career Award for Scientists and EngineersNational Science Foundation (U.S.) (NSF Physics Frontiers Centers (Center for Theoretical Biological Physics))Robert A. Welch FoundationNational Institute of General Medical Sciences (U.S.) (NIGMS R01GM074024)National Human Genome Research Institute (U.S.) (NHGRI (HG003067)

    Static and Dynamic DNA Loops form AP-1-Bound Activation Hubs during Macrophage Development

    Get PDF
    The three-dimensional arrangement of the human genome comprises a complex network of structural and regulatory chromatin loops important for coordinating changes in transcription during human development. To better understand the mechanisms underlying context-specific 3D chromatin structure and transcription during cellular differentiation, we generated comprehensive in situ Hi-C maps of DNA loops during human monocyte-to-macrophage differentiation. We demonstrate that dynamic looping events are regulatory rather than structural in nature and uncover widespread coordination of dynamic enhancer activity at preformed and acquired DNA loops. Enhancer-bound loop formation and enhancer-activation of preformed loops represent two distinct modes of regulation that together form multi-loop activation hubs at key macrophage genes. Activation hubs connect 3.4 enhancers per promoter and exhibit a strong enrichment for Activator Protein 1 (AP-1) binding events, suggesting multi-loop activation hubs driven by cell-type specific transcription factors may represent an important class of regulatory chromatin structures for the spatiotemporal control of transcription

    A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping

    Get PDF
    SummaryWe use in situ Hi-C to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types. The densest, in human lymphoblastoid cells, contains 4.9 billion contacts, achieving 1 kb resolution. We find that genomes are partitioned into contact domains (median length, 185 kb), which are associated with distinct patterns of histone marks and segregate into six subcompartments. We identify ∼10,000 loops. These loops frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species. Loop anchors typically occur at domain boundaries and bind CTCF. CTCF sites at loop anchors occur predominantly (>90%) in a convergent orientation, with the asymmetric motifs “facing” one another. The inactive X chromosome splits into two massive domains and contains large loops anchored at CTCF-binding repeats.PaperFlic

    Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture

    Get PDF
    During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the "Barr body." Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called "superdomains," such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called "superloops." DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.National Human Genome Research Institute (U.S.) (Grant HG003067

    Genetic determinants of co-accessible chromatin regions in activated T cells across humans.

    Get PDF
    Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression

    Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments

    No full text
    Hi-C experiments explore the 3D structure of the genome, generating terabases of data to create high-resolution contact maps. Here, we introduce Juicer, an open-source tool for analyzing terabase-scale Hi-C datasets. Juicer allows users without a computational background to transform raw sequence data into normalized contact maps with one click. Juicer produces a hic file containing compressed contact matrices at many resolutions, facilitating visualization and analysis at multiple scales. Structural features, such as loops and domains, are automatically annotated. Juicer is available as open source software at http://aidenlab.org/juicer/.National Institutes of Health (U.S.) (New Innovator Award 1DP2OD008540)National Science Foundation (U.S.) Physics Frontier Center (Grant PHY-1427654)National Human Genome Research Institute (U.S.) (Grant HG006193)Robert A. Welch Foundation (Grant Q-1866)Cancer Prevention and Research Institute of Texas (Scholar Award R1304)NVIDIA Corporation (Research Center Award)IBM (University Challenge Award)Google (Research Award)Baylor College of Medicine (McNair Medical Institute Scholar Award)National Human Genome Research Institute (U.S.) (Grant HG003067)National Institutes of Health (U.S.) (4D Nucleome Grant U01HL130010

    De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds

    Get PDF
    The Zika outbreak, spread by the Aedes aegypti mosquito, highlights the need to create high-quality assemblies of large genomes in a rapid and cost-effective fashion. Here, we combine Hi-C data with existing draft assemblies to generate chromosome-length scaffolds. We validate this method by assembling a human genome, de novo, from short reads alone (67X coverage). We then combine our method with draft sequences to create genome assemblies of the mosquito disease vectors Aedes aegypti and Culex quinquefasciatus, each consisting of three scaffolds corresponding to the three chromosomes in each species. These assemblies indicate that virtually all genomic rearrangements among these species occur within, rather than between, chromosome arms. The genome assembly procedure we describe is fast, inexpensive, accurate, and can be applied to many species
    corecore