45 research outputs found

    In the Hunt for Therapeutic Targets: Mimicking the Growth, Metastasis, and Stromal Associations of Early-Stage Lung Cancer Using a Novel Orthotopic Animal Model

    Get PDF
    BackgroundThe existing shortage of animal models that properly mimic the progression of early-stage human lung cancer from a solitary confined tumor to an invasive metastatic disease hinders accurate characterization of key interactions between lung cancer cells and their stroma. We herein describe a novel orthotopic animal model that addresses these concerns and consequently serves as an attractive platform to study tumor–stromal cell interactions under conditions that reflect early-stage lung cancer.MethodsUnlike previous methodologies, we directly injected small numbers of human or murine lung cancer cells into murine's left lung and longitudinally monitored disease progression. Next, we used green fluorescent protein-tagged tumor cells and immuno-fluorescent staining to determine the tumor's microanatomic distribution and to look for tumor-infiltrating immune cells and stromal cells. Finally, we compared chemokine gene expression patterns in the tumor and lung microenvironment.ResultsWe successfully generated a solitary pulmonary nodule surrounded by normal lung parenchyma that grew locally and spread distally over time. Notably, we found that both fibroblasts and leukocytes are recruited to the tumor's margins and that distinct myeloid cell attracting and CCR2-binding chemokines are specifically induced in the tumor microenvironment.ConclusionOur orthotopic lung cancer model closely mimics the pathologic sequence of events that characterizes early-stage human lung cancer propagation. It further introduces new means to monitor tumor–stromal cell interactions and offers unique opportunities to test therapeutic targets under conditions that reflect early-stage lung cancer. We argue that for such purposes our model is superior to lung cancer models that are based either on genetic induction of epithelial transformation or on ectopic transplantation of malignant cells

    Interaction between CXCR4 and CCL20 Pathways Regulates Tumor Growth

    Get PDF
    The chemokine receptor CXCR4 and its ligand CXCL12 is overexpressed in the majority of tumors and is critically involved in the development and metastasis of these tumors. CXCR4 is expressed in malignant tumor cells whereas its ligand SDF-1 (CXCL12) is expressed mainly by cancer associated fibroblasts (CAF). Similarly to CXCR4, the chemokine CCL20 is overexpressed in variety of tumors; however its role and regulation in tumors is not fully clear. Here, we show that the chemokine receptor CXCR4 stimulates the production of the chemokine CCL20 and that CCL20 stimulates the proliferation and adhesion to collagen of various tumor cells. Furthermore, overexpression of CCL20 in tumor cells promotes growth and adhesion in vitro and increased tumor growth and invasiveness in vivo. Moreover, neutralizing antibodies to CCL20 inhibit the in vivo growth of tumors that either overexpress CXCR4 or CCL20 or naturally express CCL20. These results reveal a role for CCL20 in CXCR4-dependent and -independent tumor growth and suggest a therapeutic potential for CCL20 and CCR6 antagonists in the treatment of CXCR4- and CCL20-dependent malignancies

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    Global Retinoblastoma Presentation and Analysis by National Income Level.

    Get PDF
    Importance: Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale. Objectives: To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis. Design, Setting, and Participants: A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017. Main Outcomes and Measures: Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis. Results: The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4%) were female. Most patients (n = 3685 [84.7%]) were from low- and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 [62.8%]), followed by strabismus (n = 429 [10.2%]) and proptosis (n = 309 [7.4%]). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 [95% CI, 12.94-24.80], and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 [95% CI, 4.30-7.68]). Conclusions and Relevance: This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs

    Mechanistic perspectives of calorie restriction on vascular homeostasis

    Full text link

    PET imaging of CXCR4 using copper-64 labeled peptide antagonist

    No full text
    <p>Expression of CXCR4 in cancer has been found to correlate with poor prognosis and resistance to chemotherapy. In this study we developed a derivative of the CXCR4 peptide antagonist, T140-2D, that can be labeled easily with the PET isotope copper-64, and thereby enable <i>in vivo</i> visualization of CXCR4 in tumors. T140 was conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono (<i>N</i>-hydroxysuccinimide ester) (DOTA-NHS) to give T140-2D, which contains a DOTA molecule on each of the two lysine residues. <sup>64</sup>Cu-T140-2D was evaluated <i>in vitro</i> by migration and binding experiments, and <i>in vivo</i> by microPET imaging and biodistribution, in mice bearing CXCR4-positive and CXCR4-negative tumor xenografts. T140-2D was labeled with copper-64 to give <sup>64</sup>Cu-T140-2D in a high radiochemical yield of 86 &#177; 3% (not decay-corrected) and a specific activity of 0.28 - 0.30 mCi/&#181;g (10.36 - 11.1 MBq/&#181;g). <sup>64</sup>Cu-T140-2D had antagonistic and binding characteristics to CXCR4 that were similar to those of T140. <i>In vivo</i>, <sup>64</sup>Cu-T140-2D tended to bind to red blood cells and had to be used in a low specific activity form. In this new form <sup>64</sup>Cu-T140-2D enabled specific imaging of CXCR4-positive, but not CXCR4-negative tumors. Undesirably, however, <sup>64</sup>Cu-T140-2D also displayed high accumulation in the liver and kidneys. In conclusion, <sup>64</sup>Cu-T140-2D was easily labeled and, in its low activity form, enabled imaging of CXCR4 in tumors. It had high uptake, however, in metabolic organs. Further research with imaging tracers targeting CXCR4 is required.</p

    CD4 +

    No full text

    In vitro and in vivo therapeutic efficacy of CXCR4 antagonist BKT140 against human non–small cell lung cancer

    Get PDF
    ObjectivesCXCR4/CXCL12 interactions promote non–small cell lung cancer (NSCLC) growth and dissemination. Furthermore, this axis might promote NSCLC resistance to chemotherapy and/or radiotherapy. Therefore, the CXCR4/CXCL12 axis constitutes an attractive therapeutic target for the treatment of NSCLC. We aimed to characterize the therapeutic efficacy of the novel CXCR4 antagonist BKT140 against human NSCLC.MethodsWe determined the CXCR4 expression in 5 NSCLC cell lines (H358, A549, H460, H1299, and L4). We then tested the colony-forming capacity and proliferation of these cells in the presence of CXCL12 and BKT140. Next, we measured the in vivo growth of A549 and H460 xenografts with or without BKT140 treatment. Finally, we examined, in vitro, the potential antiproliferative effect of BKT140 combined with cisplatin or paclitaxel and after irradiation of NSCLC cells.ResultsAll tested cell lines expressed CXCR4 and showed increased colony formation in response to CXCL12 stimulation. BKT140 reduced the colony-forming capacity of NSCLC cells. Proliferation assays demonstrated both cytotoxic and cytostatic properties for this peptide. H460 cells were the most sensitive to BKT140 and A549 cells the least. Subcutaneous administration of BKT140 significantly delayed the development of H460 xenografts and showed a similar trend for A549 xenografts. Finally, the antiproliferative effects of BKT140 appears to be additive to those of chemotherapeutic drugs and radiotherapy.ConclusionsTargeting the CXCL12/CXCR4 axis with BKT140 attenuated NSCLC cells tumor growth and augmented the effects of chemotherapy and radiotherapy. Future research will benefit from delineating the downstream mechanism of BKT140 action and defining BKT140 susceptibility markers
    corecore