30 research outputs found

    Larvicidal, nematicidal, antifeedant and antifungal, antioxidant activities of Mentha spicata (Lamiaceae) root extracts

    Get PDF
    Purpose: To evaluate the larvicidal, nematicidal, antifeedant, and antifungal effects of 10 solvent extracts of Mentha spicata root.Methods: Ten solvent extracts were investigated for their total flavonoid and phenolic content and screened for larvicidal, nematicidal, antifeedant, and antifungal activities. The total phenolic content of the extracts was determined using the Folin–Ciocalteu method, while total flavonoid content was determined by aluminium chloride (AlCl3) colorimetric assay. Four solvents extracts were screened for antifungal activity against Aspergillus niger, Candida albicans, recultured Cryptococcus neoformans, and Microsporum audouinii using the agar diffusion method. The nematicidal activity of the compounds was evaluated against the juvenile Meloidogyne javanica organism, while larvicidal properties were evaluated against the urban mosquito Culex quinquefasciatus using a standard bioassay protocol. The antifeedant activity of marine acclimated Oreochromis mossambicus was used for evaluating ichthyotoxic potential.Results: The total flavonoid content in the extracts ranged from 18.5 to 83.4 mg/g, and the amount of free phenolic compounds ranged from 14.7 to 91.9 mg/g of extract powder. The water extract of these plants exhibited significant antioxidant activity and significant levels of phenolics and flavonoids. The water extract exhibited higher larvicidal (LD50 = 11.77 μg/mL), nematicidal (LD50 = 11.78 μg/mL), antifeedant (LD50 > 40 μg/mL), and antifungal activities (minimum inhibitory concentration: 16 μg/mL) against M. audouinii compared with the other extracts.Conclusion: These results show that the water extract of Mentha spicata may be used as a potential natural alternative source of nutritional and pharmaceutical ingredients.Keywords: Mentha spicata, Larvicidal, Nematicidal, Antifeedant and Antifungal activities, Nutritional supplement, Pharmaceutical ingredient

    Synthesis and antimicrobial activity of some new pyrrole derivatives

    Get PDF
    New pyrrole derivatives were synthesized and structures were confirmed by IR, 1H NMR, 13C NMR, mass spectra, and elemental analyses data. The reaction was performed by using ordinary condensation type, which enabled to easy work-up and good yield. Synthesized compounds were screened for antimicrobial activity.DOI: http://dx.doi.org/10.4314/bcse.v26i3.1

    Corrigendum: Synthesis and cytotoxic activity of novel indole derivatives and their in silico screening on spike glycoprotein of sars-cov-2

    Get PDF
    The authors Kaliappillai Vijayakumar, Magda H. Abdellattif, Mohd Shahbaaz were not included in the published article and the authors Daoud Ali, Saud Alarifi, and Amal Alotaibi were mistakenly included in the author list. The author list has been corrected throughout the article and in the Author Contributions statement. In addition, the funding information was incorrect and has been amended to include funding for Magda H. Abdellattif. The corrected Author Contributions, Funding and Acknowledgments statements appears below. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated

    Potential in vitro antimicrobial efficacy of Holigarna arnottiana (Hook F)

    No full text
    Objective: To explore the in vitro antimicrobial potential of Holigarna arnottiana (H. arnottiana) against human and shrimp pathogenic bacteria and use GC-MS analysis to elucidate its antimicrobial principles. Methods: In the present study, organic extract of H. arnottiana was examined for in vitro antimicrobial potency against five clinical human pathogens, seven species of human type culture pathogens, six pathogenic Vibrio strains isolated from moribund tiger shrimp (Penaeus monodon) and seven type cultures (Microbial Type Culture Collection, MTCC) of prominent shrimp pathogens. Results: The extraction of H. arnottiana with ethyl acetate yielded bioactive crude extract that efficiently repressed the growth of all tested pathogens. Among the pathogens tested, shrimp pathogens were the most susceptible organisms while clinical pathogens were found to be a little resistant. The chemical constituents of the H. arnottiana were analysed by GC-MS which revealed the presence of major compounds such as 3,7,11,15-tetramethyl-2-hexadecen-1-o1 (42.1%), 1-lodo-2-methylundecane (34.5%) and squalene (11.1%) which might have a functional role in the chemical defence against microbial invasion. Conclusions: Based on the finding it could be inferred that H. arnottiana would be a reliable source for developing shrimp and human bio-therapeutics in future

    Synthesis of some new series of Mannich base derivatives and their antimicrobial activity

    No full text
    A series of 1-[(4-substituted phenyl)(hydrazinyl)methyl]-1H-imidazole (1-6) were synthesized by Mannich reaction. Synthesized compounds 1-6 were confirmed by IR, ¹H NMR, ¹³C NMR, Mass and elemental analysis. Synthesized compounds 1-6 were screened for antimicrobial activity.</div

    Ethyl 3,5-Dimethyl-4-[(4-phenyl-1,3-thiazol-2-yl)carbamoyl]-1H-pyrrole-2-carboxylate

    No full text
    A new compound, ethyl 3,5-dimethyl-4-[(4-phenyl-1,3-thiazol-2-yl)carbamoyl]-1H-pyrrole-2-carboxylate (3) was synthesized by the amination method. The synthesized compound (3) was characterized by IR, 1H-NMR, 13C-NMR, mass spectral data and elemental analysis

    Antioxidant, antibacterial, and cytotoxic activities of cimemoxin derivatives and their molecular docking studies

    No full text
    Purpose: The cimemoxin derivatives and their biological importance in antioxidant, antibacterial, and cytotoxic activities were the main focus of this study. By using a one-step reaction and green chemistry method, this study was able to synthesise derivatives of cimemoxin-related Mannich base compounds. Methods: Green chemistry can be used to prepare new, one-pot syntheses of cimemoxin derivatives (1a-i) Mannich base derivatives. FTIR, mass spectrometry, elemental analysis, and 1H and 13C NMR were used to analyse the newly synthesised compounds. The cytotoxic, antibacterial, and antioxidant activities of synthesized compounds (1a-i) were investigated. To test all synthesised compounds (1a–i) for cytotoxicity against normal Vero cell lines and MCF-7, the antioxidant activities were studied using DPPH, NO, H2O2, and ABTS•+ assays. The synthesised compounds were screened for anti-tyrosinase and antibacterial activities. Highly active compounds were investigated using molecular docking studies. Results: The compound 1h showed considerable activity in H2O2 (IC50: 13.79 µg/mL) and DPPH-scavenging was significantly active (IC50: 19.62 µg/mL) compared to the standard BHT (IC50: 27.16 and 33.88 µg/mL). Compound 1f was more effective than trolox (85.28 %) against ABTS and AAPH antioxidants. The most potent inhibitory activity was observed for compound 1h (IC50 = 15.16 µg/mL) which was more potent than kojic acid (IC50 = 17.79 ± 0.95 µg/mL). All synthetic substances were tested for their cytotoxic potential. Compound 1f (IC50 = 0.12 µg/mL) was extremely active compared to doxorubicin (IC50 = 0.74 µg/ml) and other compounds were lowly active compared to the MCF-7 cell line. In terms of anti-tyrosinase activity, compound 1h was highly active compared with the standard, and compound 1d was highly active against K. pneumonia. Conclusion: In this study, strong antioxidant, antibacterial, and cytotoxic activities were reported for all the compounds. In molecular docking studies, compounds 1d and 1h had higher binding affinities than the other compounds. Compounds 1d and 1h performed well in all tests. Additionally, this investigation successfully identified a number of intriguing compounds with cytotoxic and antioxidant properties

    Anti-inflammatory and antimicrobial activities of novel pyrazole analogues

    No full text
    A new sequence of pyrazole derivatives (1–6) was synthesized from condensation technique under utilizing ultrasound irradiation. Synthesized compounds were characterized from IR, 1H NMR, 13C NMR, Mass and elemental analysis. Synthesized compounds (1–6) were screened for antimicrobial activity. Among the compounds 3 (MIC: 0.25 μg/mL) was exceedingly antibacterially active against gram negative bacteria of Escherichia coli and compound 4 (MIC: 0.25 μg/mL) was highly active against gram positive bacteria of Streptococcus epidermidis compared with standard Ciprofloxacin. Compound 2 (MIC: 1 μg/mL) was highly antifungal active against Aspergillus niger proportionate to Clotrimazole. Synthesized compounds (1–6) were screened for anti-inflammatory activity and the compound 2-((5-hydroxy-3-methyl-1H-pyrazol-4-yl)(4-nitrophenyl)methyl)hydrazinecarboxamide (4) was better activity against anti-inflammatory when compared with standard drugs (Diclofenac sodium). Compounds (2, 3 and 4) are the most important molecules and hence the need to develop new drugs of antibacterial, antifungal and anti-inflammatory agents

    Synthesis and antibacterial activity of pyrano[3,2-g]chromene-4,6-dione derivatives and their molecular docking and DFT calculation studies

    No full text
    Pyran-4-one and chromenone are well known bioactive compounds, particularly antimicrobial activity. Present study investigation antibacterial activity of pyranone connected chromenone derivatives. New synthesis of pyrano[3,2-g]chromene-4,6-dione derivatives were synthesized via catalysis free eco-friendly method. Synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR, and mass spectral analysis. An entirely new synthesis of pyrano[3,2-g]chromene-4,6-dione derivatives (1a–o) were studied for their in vitro antibacterial properties. The gram-positive bacterium B. cereus was thought to be the most sensitive of the studied microorganisms, and compounds 1f, 1 g, 1 k, 1 l, and 1o demonstrated the best antibacterial action. The results of the antibacterial activities would suggest that 1 g was more effective against B. cereus (MIC: 0.5 μg/mL) than other compounds and Ciprofloxacin (MIC: 2 μg/mL). Against B. cereus bacterial pathogens, compound 1 g demonstrated exceptional antibacterial activity. The compound 1 g and Ciprofloxacin docked with 5V8E protein action of compound 1 g (-7.2 kcal/mol) and ciprofloxacin (-3.2 kcal/mol) is quite potent, and it also showed greater binding affinity. DFT calculation was well support the performance of energy gap between low and highly active compounds for 1 k (ΔE gap = 0.15 eV) and 1 g (ΔE gap = 0.16 eV), respectively. The lead molecules were used for antibacterial agent
    corecore