2 research outputs found

    Binge Drinking Following Resistance Exercise: Effect on Muscle Power Recovery

    Get PDF
    Alcohol impairs recovery of isokinetic performance following muscle damaging resistance exercise but no knowledge exists regarding alcohol’s effect on recovery of performance in explosive isotonic movements following resistance exercise that induces only limited muscle damage. Purpose: To investigate the effect of alcohol on recovery from resistance exercise for explosive performance measures. Methods: Nine healthy men (Mean ± SD: 24.8 ± 3.2 years, 176 ± 7 cm, 86.4 ± 14.6 kg) completed 2 identical acute heavy resistance exercise tests (AHRET) separated by 1 week. The AHRET consisted of 6 sets of 10 repetitions of smith machine squats at 80% of 1-repetition maximum (1-RM) with 2 min of rest between sets. From 10-20 minutes post-AHRET participants consumed either 190 proof grain alcohol (EtOH) equal to 1.086 g of alcohol per kg lean mass (82-122 ml total) or no alcohol (Placebo) diluted in an artificially sweetened and calorie free beverage. The participants were blinded to conditions and the order of conditions was counter-balanced. Blood alcohol concentration (BAC) was measured using a breathalyzer. Sixty-five minutes pre-exercise, participants ingested a meal replacement beverage (33.5 kJ per kg body mass). Before the AHRET (PRE) and the following morning (AM), participants performed three high pulls and three bench press throws with 30% of 1-RM, and 10 consecutive vertical jumps, all at maximal effort. Peak power was measured for all exercises. Muscle soreness was measured using analog scales at PRE and AM. Results: BAC peaked 60-90 min post-exercise in all participants (0.084 ± 0.017 g·dl-1) on alcohol ingestion days. No effect of alcohol was found for peak power in the high pull (EtOH, PRE: 1658 ± 432 W, AM: 1659 ± 260 W; Placebo, PRE: 1599 ± 397 W, AM: 1579 ± 301 W), bench press throw (EtOH, PRE: 1120 ± 276 W, AM: 1105 ± 295 W; Placebo, PRE: 1119 ± 202 W, AM: 1089 ± 257 W), or vertical jump (EtOH, PRE: 52.6 ± 13.5 W·kg-1, AM: 48.5 ± 6.3 W·kg-1; Placebo, PRE: 52.2 ± 9.4 W·kg-1, AM: 47.9 ± 9.0 W·kg-1). Leg soreness increased moderately from PRE to AM with no difference between conditions. CONCLUSION: A moderate BAC does not appear to affect explosive upper or lower body power capability on the morning following a heavy squat session that induces only limited muscle damage

    The Effect of Work Rate on Oxygen Uptake Kinetics During Exhaustive Severe Intensity Cycling Exercise

    Get PDF
    The effect of work rate on oxygen uptake kinetics during exhaustive severe intensity cycling exercise Jennifer L. Sylvester, Samantha D. Burdette, Steven W. Cross, Nosa O. Idemudia, John, H. Curtis, Jakob L. Vingren, David W. Hill. Applied Physiology Laboratory, University of North Texas, Denton, TX During exhaustive severe intensity exercise, the oxygen uptake (VO2) increases exponentially, with a time constant of ~30 s. After ~1 to 2 min, a slow component emerges and drives the VO2 to its maximum. There are clear differences in the VO2 response profile across exercise intensity domains. These disparities might not be attributable to metabolic demand but, rather, to characteristics of the various intensity domains, such as the consequences of lactic acid production. PURPOSE: To investigate the role of exercise intensity on the VO2 response profile at intensities wholly within the severe domain. METHODS: Four women (mean ± SD: age 22 ± 2 years, height 167 ± 7 cm, mass 66 ± 5 kg) and eight men (age 23 ± 2 yr, height 179 ± 9 cm, mass 78 ± 10 kg) performed exhaustive constant-power cycle ergometer tests at two different severe intensity work rates (263 ± 78 W and 214 ± 64 W). Smoothed breath-by-breath VO2 data were fitted to a two-component (primary response and slow component) model using iterative regression. RESULTS: Times to exhaustion were 217 ± 27 s and 590 ± 82 s, respectively. The VO2max values were the same at the two different work rates (2973 ± 691 ml·min-1 and 3011 ± 728 ml·min-1). The amplitude of the primary response was greater (p \u3c 0.05) at the higher work rate (2095 ± 716 ml·min-1) than at the lower work rate (1857 ± 618 ml·min-1) and the amplitude of the slow component was smaller (367 ± 177 ml·min-1 vs 645 ± 347 ml·min-1). In addition, the time delay before the emergence of the slow component was shorter at the higher work rate (92 ± 22 s vs 116 ± 42 s). CONCLUSION: The results show that exercise intensity per se affects the VO2 response profile within the severe intensity domain and suggest that metabolic demand drives the primary response of VO2 kinetics within this domain. Category to be judged: Master\u27
    corecore