94 research outputs found

    Random Mutational Analysis Targeting Residue K155 within the Transmembrane β-Hairpin of the Mosquitocidal Mpp46Ab Toxin

    Get PDF
    Mpp46Ab is a mosquito-larvicidal pore-forming toxin derived from Bacillus thuringiensis TK-E6. Pore formation is believed to be a central mode of Mpp46Ab action, and the cation selectivity of the channel pores, in particular, is closely related to its mosquito-larvicidal activity. In the present study, we constructed a mutant library in which residue K155 within the transmembrane β-hairpin was randomly replaced with other amino acid residues. Upon mutagenesis and following primary screening using Culex pipiens mosquito larvae, we obtained 15 mutants in addition to the wild-type toxin. Bioassays using purified proteins revealed that two mutants, K155E and K155I, exhibited toxicity significantly higher than that of the wild-type toxin. Although increased cation selectivity was previously reported for K155E channel pores, we demonstrated in the present study that the cation selectivity of K155I channel pores was also significantly increased. Considering the characteristics of the amino acids, the charge of residue 155 may not directly affect the cation selectivity of Mpp46Ab channel pores. Replacement of K155 with glutamic acid or isoleucine may induce a similar conformational change in the region associated with the ion selectivity of the Mpp46Ab channel pores. Mutagenesis targeting the transmembrane β-hairpin may be an effective strategy for enhancing the ion permeability of the channel pores and the resulting mosquito-larvicidal activity of Mpp46Ab

    Characterization of the channel-pores formed by Bacillus thuringiensis Cry46Ab toxin in planar lipid bilayers

    Get PDF
    Cry46Ab from Bacillus thuringiensis TK-E6 is a new mosquitocidal toxin with aerolysin-type architecture, and has been shown that co-administration of Cry46Ab with other mosquitocidal Cry toxins results in synergistic toxicity against Culex pipiens Coquillett (Diptera: Culicidae) mosquito larvae. Cry46Ab, therefore, is expected to find use in improving the insecticidal activity of B. thuringiensis-based bioinsecticides. In the present study, the mode of action of Cry46Ab was explored by single-channel measurements of Cry46Ab channel-pores. The single-channel conductances of channel-pores formed in planar lipid bilayers by Cry46Ab were determined to be 31.8 +/- 2.7 pS in 150 mM NaCl and 24.2 +/- 0.7 pS in 150 mM CaCl2. Ion-selectivity measurements revealed that the channel-pores formed by Cry46Ab were cation selective. The permeability ratio of K+ to Cl-was approximately 4, and the preferences for cations were K+ > Na+, K+ > Ca2+, and Ca2+ > Na+. A calcein release assay using liposomes suggested that Cry46Ab influences the integrity of membrane vesicles. Formation of cation-selective channel-pores has been observed with other insecticidal Cry toxins that have structures distinct from those of Cry46Ab; the capability of forming such pores may be a property required of insecticidal toxins

    Mutational analysis of the transmembrane α4-helix of Bacillus thuringiensis mosquito-larvicidal Cry4Aa toxin

    Get PDF
    Cry4Aa, produced by Bacillus thuringiensis subsp. israelensis, exhibits specific toxicity to larvae of medically important mosquito genera. Cry4Aa functions as a pore-forming toxin, and a helical hairpin (α4-loop-α5) of domain I is believed to be the transmembrane domain that forms toxin pores. Pore formation is considered to be a central mode of Cry4Aa action, but the relationship between pore formation and toxicity is poorly understood. In the present study, we constructed Cry4Aa mutants in which each polar amino acid residues within the transmembrane α4 helix was replaced with glutamic acid. Bioassays using Culex pipiens mosquito larvae and subsequent ion permeability measurements using symmetric KCl solution revealed an apparent correlation between toxicity and toxin pore conductance for most of the Cry4Aa mutants. In contrast, the Cry4Aa mutant H178E was a clear exception, almost losing its toxicity but still exhibiting a moderately high conductivity of about 60% of the wild-type. Furthermore, the conductance of the pore formed by the N190E mutant (about 50% of the wild-type) was close to that of H178E, but the toxicity was significantly higher than that of H178E. Ion selectivity measurements using asymmetric KCl solution revealed a significant decrease in cation selectivity of toxin pores formed by H178E compared to N190E. Our data suggest that the toxicity of Cry4Aa is primarily pore related. The formation of toxin pores that are highly ion-permeable and also highly cation-selective may enhance the influx of cations and water into the target cell, thereby facilitating the eventual death of mosquito larvae

    Channel-pore cation selectivity is a major determinant of Bacillus thuringiensis Cry46Ab mosquitocidal activity

    Get PDF
    Cry46Ab from Bacillus thuringiensis TK-E6 is a new mosquitocidal toxin with an aerolysin-type architecture, and it is expected to be used as a novel bioinsecticide. Cry46Ab acts as a functional pore-forming toxin, and characteristics of the resulting channel pores, including ion selectivity, have been analyzed. However, the relationship between channel-pore ion selectivity and insecticidal activity remains to be elucidated. To clarify the effects of charged amino acid residues on the ion permeability of channel-pores and the resulting insecticidal activity, in the present study, we constructed Cry46Ab mutants in which a charged amino acid residue within a putative transmembrane β-hairpin region was replaced with an oppositely charged residue. Bioassays using Culex pipiens mosquito larvae revealed that the mosquitocidal activity was altered by the mutation. A K155E Cry46Ab mutant exhibited toxicity apparently higher than that of wild-type Cry46Ab, but the E159K and E163K mutants exhibited decreased toxicity. Ions selectivity measurements demonstrated that the channel pores formed by both wild-type and mutant Cry46Abs were cation selective, and their cation preference was also similar. However, the degree of cation selectivity was apparently higher in channel pores formed by the K155E mutant, and reduced selectivity was observed with the E159K and E163K mutants. Our data suggest that channel-pore cation selectivity is a major determinant of Cry46Ab mosquitocidal activity and that cation selectivity can be controlled via mutagenesis targeting the transmembrane β-hairpin region

    Bacillus thuringiensis Cry11Ba works synergistically with Cry4Aa but not with Cry11Aa for toxicity against mosquito Culex pipiens (Diptera: Culicidae) larvae

    Get PDF
    A 2,175-bp modified gene (cry11Ba-S1) encoding Cry11Ba from Bacillus thuringiensis subsp. jegathesan was designed and the recombinant protein was expressed as a fusion protein with glutathione S-transferase in Escherichia coli. The recombinant Cry11Ba was highly toxic against Culex pipiens mosquito larvae, being nine and 17 times more toxic than mosquitocidal Cry4Aa and Cry11Aa from Bacillus thuringiensis subsp. israelensis, respectively. Interestingly, a further increase in the toxicity of the recombinant Cry11Ba was achieved by mixing with Cry4Aa, but not with Cry11Aa. These findings suggested that Cry11Ba worked synergistically with Cry4Aa, but not with Cry11Aa, in exhibiting toxicity against C. pipiens larvae. On the other hand, the amount of Cry toxin bound to brush border membrane vesicles (BBMVs) did not significantly change between individual toxins and the toxin mixtures, suggesting that the increase in toxins binding to BBMVs was not a reason for the observed synergistic effect. It is generally accepted that synergism of toxins is a potentially powerful tool for enhancing insecticidal activity and managing Cry toxin resistance in mosquitoes. The mixture of Cry4Aa and Cry11Ba in order to increase toxicity would be very valuable in terms of mosquito control

    A Lipid Bilayer Formed on a Hydrogel Bead for Single Ion Channel Recordings

    Get PDF
    Ion channel proteins play important roles in various cell functions, making them attractive drug targets. Artificial lipid bilayer recording is a technique used to measure the ion transport activities of channel proteins with high sensitivity and accuracy. However, the measurement efficiency is low. In order to improve the efficiency, we developed a method that allows us to form bilayers on a hydrogel bead and record channel currents promptly. We tested our system by measuring the activities of various types of channels, including gramicidin, alamethicin, alpha-hemolysin, a voltage-dependent anion channel 1 (VDAC1), a voltage- and calcium-activated large conductance potassium channel (BK channel), and a potassium channel from Streptomyces lividans (KcsA channel). We confirmed the ability for enhanced measurement efficiency and measurement system miniaturizion

    Impact of the Patency of Inferior Mesenteric Artery on 7-Year Outcomes After Endovascular Aneurysm Repair

    Full text link
    Purpose: The impact of preoperative patent inferior mesenteric artery (IMA) on late outcomes following endovascular aneurysm repair (EVAR) remains unclear. This study aimed to investigate the specific influence of IMA patency on 7-year outcomes after EVAR. Materials and Methods: In this retrospective cohort study, 556 EVARs performed for true abdominal aortic aneurysm cases between January 2006 and December 2019 at our institution were reviewed. Endovascular aneurysm repairs performed using a commercially available device with no type I or type III endoleak (EL) during follow-up and with follow-up ≥12 months were included. A total of 336 patients were enrolled in this study. The cohort was divided into the patent IMA group and the occluded IMA group according to preoperative IMA status. The late outcomes, including aneurysm sac enlargement, reintervention, and mortality rates, were compared between both groups using propensity-score-matched data. Results: After propensity score matching, 86 patients were included in each group. The median follow-up period was 56 months (interquartile range: 32–94 months). The incidence of type II EL at discharge was 50% in the patent IMA group and 19% in the occluded IMA group (p<0.001). The type II EL from IMA and lumbar arteries was significantly higher in the patent IMA group than in the occluded IMA group (p<0.001 and p=0.002). The rate of freedom from aneurysm sac enlargement with type II EL was significantly higher in the occluded IMA group than in the patent IMA group (94% vs 69% at 7 years; p<0.001). The rate of freedom from reintervention was significantly higher in the occluded IMA group than in the patent IMA group (90% vs 74% at 7 years; p=0.007). Abdominal aortic aneurysm–related death and all-cause mortality did not significantly differ between groups (p=0.32 and p=0.34). Conclusions: Inferior mesenteric artery patency could affect late reintervention and aneurysm sac enlargement but did not have a significant impact on mortality. Preoperative assessment and embolization of IMA might be an important factor for improvement in late EVAR outcomes. Clinical Impact: The preoperative patency of the inferior mesenteric artery was significantly associated with a higher incidence of sac enlargement and reintervention with type II endoleak following endovascular aneurysm repair, even after adjustment for patient background. Preoperative assessment and embolization of inferior mesenteric artery might be an important factor for improvement in late EVAR outcomes.Ide T, Shimamura K, Kuratani T, et al. Impact of the Patency of Inferior Mesenteric Artery on 7-Year Outcomes After Endovascular Aneurysm Repair. Journal of Endovascular Therapy. 2022. Copyright © 2022 The Author(s). doi:10.1177/15266028221121748

    Potency of the mosquitocidal Cry46Ab toxin produced using a 4AaCter-tag, which facilitates formation of protein inclusion bodies in Escherichia coli

    Get PDF
    A Cry46Ab toxin derived from Bacillus thuringiensis strain TK-E6 shows mosquitocidal activity against Culex pipiens pallens Coquillett (Diptera: Culicidae) larvae as well as preferential cytotoxicity against human cancer cells. In B. thuringiensis cells, Cry46Ab is produced and accumulates as a protein crystal that is processed into the active 29-kDa toxin upon solubilization in the alkaline environment of the insect midgut. The Cry46Ab protoxin is 30 kDa, and is therefore thought to require an accessory protein such as P20 and/or ORF2 for efficient crystal formation. In the present study, the potency of the 4AaCter-tag was investigated for the production of alkali-soluble inclusion bodies of recombinant Cry46Ab in Escherichia coli. The 4AaCter-tag is a polypeptide derived from the C-terminal region of the B. thuringiensis Cry4Aa toxin and facilitates the formation of alkali-soluble protein inclusion bodies in E. coli. Fusion with the 4AaCter-tag enhanced both Cry46Ab production and the formation of Cry46Ab inclusion bodies. In addition, upon optimization of protein expression procedures, the Cry46Ab–4AaCter inclusion bodies showed mosquitocidal activity and stability in aqueous environments comparable to Cry46Ab without the 4AaCter-tag. Our study suggests that use of the 4AaCter-tag is a straightforward approach for preparing formulations of smaller-sized Cry toxins such as Cry46Ab in E. coli
    • …
    corecore