19 research outputs found
Optimal Centers’ Allocation in Smoothing or Interpolating with Radial Basis Functions
This work was supported by FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades (Research Project A-FQM-76-UGR20, University of Granada) and by the Junta de Andalucía (Research Group FQM191).Function interpolation and approximation are classical problems of vital importance in
many science/engineering areas and communities. In this paper, we propose a powerful methodology
for the optimal placement of centers, when approximating or interpolating a curve or surface to
a data set, using a base of functions of radial type. In fact, we chose a radial basis function under
tension (RBFT), depending on a positive parameter, that also provides a convenient way to control
the behavior of the corresponding interpolation or approximation method. We, therefore, propose
a new technique, based on multi-objective genetic algorithms, to optimize both the number of
centers of the base of radial functions and their optimal placement. To achieve this goal, we use
a methodology based on an appropriate modification of a non-dominated genetic classification
algorithm (of type NSGA-II). In our approach, the additional goal of maintaining the number of
centers as small as possible was also taken into consideration. The good behavior and efficiency of
the algorithm presented were tested using different experimental results, at least for functions of one
independent variable.Junta de Andalucía-Consejería de Transformación Econímica, Industria, Conocimiento y Universidades
A-FQM-76-UGR20Universidad de GranadaEuropean Regional Development FundJunta de Andalucía
FQM19
Evolutionary computation of optimal knots allocation in smoothing methods by multivariate splines and radial function basis spaces
El objetivo de esta tesis doctoral ha sido el estudio, desarrollo y adaptación de una adecuada técnica de optimización multi-objetivo de tipo evolutivo (MOGA del inglés "Multi-Objective Genetic Algorithm") para el emplazamiento óptimo de los nodos (en el caso de bases de B-splines cúbicos o bicúbicos) o centros (cuando usamos funciones de base radiales) en sendos problemas de aproximación o de interpolación.Tesis Univ. Granada
Locally optimal designs for generalized linear models with applications to gamma models
Locally optimal designs for generalized linear models are derived at certain values of
the regression parameters. In the present thesis analytic solutions for optimal designs
are mostly developed. In particular situations numerical methods are employed. We
restrict to D-, A- and Kiefer Phi kappa-optimality criteria.
For general setup of the generalized linear model, by means of The General Equivalence
Theorem, necessary and sufficient conditions in term of intensity values are
obtained to characterize locally optimal designs. In this context, linear predictors with
binary factors are assumed constituting first order models, models with interactions
and models without intercept. Additionally, a particular approach is developed to
identify locally D- or A-optimal design for the model with intercept from that for the
model without intercept and vice versa.
Gamma models with a power link function are considered constituting a particular
class of generalized linear models. Relevant structures for the linear predictor are
employed based on quantitative factors. The notions of locally essentially complete
classes and locally complete classes of designs are introduced and such classes are
established. On that basis locally D- and A-optimal designs are derived. In certain
cases, the obtained results under generalized linear models with binary factors can
be transferred to gamma models with quantitative factors. The explicit impact of
the model parameters on the optimality of the designs is investigated. Furthermore,
product type designs are derived for gamma models with product-type interactions.
Moreover, gamma models having a linear predictor without intercept are considered.
For a specific scenario sets of locally Phi kappa-optimal designs are developed. Further, by a
suitable transformation between gamma models with and without intercept optimality
results are transferred from one model to the other. Additionally with the aid of The
General Equivalence Theorem optimality are characterized for multiple regression by
a system of polynomial inequalities which can be solved analytically or by computer
algebra. The robustness of the derived designs for gamma models with respect to
misspecifications of the initial parameter values is examined by means of their local
efficiencies.
Optimal designs for multivariate generalized linear models are investigated. The
components of the multivariate response might be combined with linear predictors
via distinct link functions. We found that the locally optimal design for the univariate
generalized linear models remains the same in the multivariate structure. In particular,
product type designs are developed for the multivariate gamma model.Lokal optimale Versuchspläne für verallgemeinerte lineare Modelle werden für vorgegebene
Werte der Regressionsparameter hergeleitet. In der vorliegenden Arbeit werden
zumeist analytische Lösungen für optimale Versuchpläne entwickelt. In speziellen
Situationen werden auch numerische Methoden verwendet. Wir beschränken unsere
Untersuchungen auf das D- und A-Kriterium sowie Kiefers Phi kappa-Optimalitätskriterien.
Im allgemeinen Rahmen der verallgemeinerten linearen Modelle werden mittels
des allgemeinen Äquivalenzsatzes notwendige und hinreichende Bedingungen erhalten,
die Intensitätswerte verwenden und lokal optimale Versuchspläne charakterisieren. In
diesem Zusammenhang werden für lineare Prädiktoren mit binären Faktoren Modelle
erster Ordnung, Modelle mit Wechselwirkungen und Modelle ohne Interzept (konstanten
Term) betrachtet. Darüber hinaus wird eine spezielle Methode entwickelt, um
lokal D- oder A-optimale Versuchspläne für ein Modell mit Interzept aus solchen für
ein Modell ohne Interzept, und umgekehrt, zu konstruieren.
Im Weiteren werden Gamma-Modelle mit einer Potenzfunktion als Link-Funktion
(Power Link) betrachtet, die eine spezielle Klasse verallgemeinerter linearer Modelle
bilden. Hierzu werden relevante Strukturen für lineare Prädiktoren verwendet, die
auf quantitativen Faktoren basieren. Die Begriffe einer lokal wesentlich vollständigen
Klasse und einer lokal vollständigen Klasse von Versuchsplänen werden eingeführt,
und derartige Klassen werden für verallgemeinerte lineare Modelle mit binären Faktoren
erhaltene Resultate. In geeigneten Fällen können die für verallgemeinerte lineare
Modelle mit binären Faktoren erhaltene Resultate auf Gamma-Modelle mit quantitativen
Faktoren übertragen werden. Zur Messung der Qualität wird der Einfluss der
Modellparameter auf die Optimalität der Versuchspläne untersucht. Weiterhin werden
Versuchspläne mit Produkt-Struktur als optimal für Gamma-Modelle mit produktartigen
Wechselwirkungen identifiziert. Darüber hinaus werden auch Gamma-Modelle mit
linearem Prädiktor ohne Interzept betrachtet. Für ein spezielles Szenario werden Mengen
lokal Phi kappa-optimaler Versuchspläne gefunden. Durch eine geeignete Transformation
werden Optimalitätsresultate für Gamma-Modelle mit Interzept auf Gamma-Modelle
ohne Interzept, und umgekehrt, übertragen. Außerdem wird mit Hilfe des allgemeinen
Äquivalenzsatzes die Optimalität für multiple Regression charakterisiert durch ein System
polynomialer Ungleichungen, die analytisch oder mittels Computer Algebra gelöst
werden können. Die Robustheit der hergeleiteten Versuchspläne für Gamma-Modelle
bezüglich Fehlspezifikation der Parameter wird mittels ihrer lokalen Effizienzen überprüft.
Schließlich werden optimale Versuchspläne für multivariate verallgemeinerte lineare
Modelle untersucht. Dabei können die Komponenten der multivariaten Regressionsfunktion
mit linearen Prädiktoren über verschiedene Link-Funktionen kombiniert
werden. Es kann gezeigt werden dass der lokal optimale Versuchsplan für das univariate
verallgemeinerte lineare Modell such für die multivariate Struktur optimal bleibt.
Insbesondere werden Versuchspläne mit Produkt-Struktur für multivariate Gamma-
Modelle entwickelt
Analytic solutions for locally optimal designs for gamma models having linear predictors without intercept
The gamma model is a generalized linear model for gamma-distributed outcomes.
The model is widely applied in psychology, ecology or medicine. Recently, Gaffke
et al. (J Stat Plan Inference 203:199–214, 2019) established a complete class and
an essentially complete class of designs for gamma models to obtain locally optimal
designs in particular when the linear predictor includes an intercept term. In this paper
we extend this approach to gamma models having linear predictors without intercept.
For a specific scenario sets of locally D- and A-optimal designs are established. It
turns out that the optimality problem can be transformed to one under gamma models
with intercept leading to a reduction in the dimension of the experimental region. On
that basis optimality results can be transferred from one model to the other and vice
versa. Additionally by means of the general equivalence theorem optimality can be
characterized formultiple regression by a system of polynomial inequalitieswhich can
be solved analytically or by computer algebra. Thus necessary and sufficient conditions
can be obtained on the parameter values for the local D-optimality of specific designs.
The robustness of the derived designs with respect to misspecification of the initial
parameter values is examined by means of their local D-efficiencies.Projekt DEAL 202
تقييم استخدام المياه العادمة المعالجة على الخواص النيميائية للتربة وانتاجية المحاصيل في قطاع غزة
The increasing demand for water in the arid and semi-arid regions has resulted in the emergence of wastewater application for agriculture. Using treated wastewater as marginal quality water in agriculture is a justified practice, yet care should be taken to minimize adverse environmental impacts and to prevent soil deterioration. The objective of this research is to investigate the impact of using treated wastewater for irrigation on soil chemical properties and plant productivity. An reuse pilot study was carried out in Al-Zaitoun agricultural farm in the Gaza Strip from May to September2011. Acomparison was carried out between the soil properties in two experimental plots; one was irrigated with the effluent from Gaza Wastewater Treatment Plant over a period of four months, and the other was irrigated with fresh water in the same period. The irrigation water was applied by drip irrigation system, and the crop used was sorghum. The fresh water samples were obtained from the local well in the farm, and treated wastewater samples were obtained from the wastewater collection basin and analyzed for TSS, EC, pH, TDS, Ca, Mg, Na, SAR, CO3, Cl, NO3, TKN, TP, K, PO4, and selected heavy metals "Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn" in addition to BOD, COD and the number of fecal and total coliforms before irrigation. Composite soil samples were taken from depth of 0-30 cm in both plots and analyzed for the main chemical parameters. The results indicated that the level of TDS, Na, Cl, TSS, Zn and Fe were higher in the effluent than the fresh water; it was above the recommended Palestinian standard for dry fodder irrigated by treated wastewater. Also, irrigation with wastewater lead to significant increase in O.M, CEC, K, TP, Ca, Mg, Na, and Cl in soil than irrigation with fresh water. In addition, the increases of Zn, Fe, Mn, and Pb in soil and sorghum plant irrigated with treated wastewater were significant in comparison with the plants irrigated with fresh water. Further, treated wastewater increased the plants height, and grain weight of sorghum
Equivariance and invariance for optimal designs in generalized linear models exemplified by a class of gamma models
The main intention of the present work is to outline the concept of equivariance and
invariance in the design of experiments for generalized linear models and to demonstrate
its usefulness. In contrast with linear models, pairs of transformations have to
be employed for generalized linear models. These transformations act simultaneously
on the experimental settings and on the location parameters in the linear component.
Then, the concept of equivariance provides a tool to transfer locally optimal designs
from one experimental region to another when the nominal values of the parameters
are changed accordingly. The stronger concept of invariance requires a whole group
of equivariant transformations. It can be used to characterize optimal designs which
reflect the symmetries resulting from the group actions. The general concepts are illustrated
by models with gamma distributed response and a canonical link. There, for a
given transformation of the experimental settings, the transformation of the parameters
is not unique and may be chosen to be nonlinear in order to fully exploit the model
structure. In this case, we can derive invariant maximin efficient designs for the Dand
the IMSE-criterion.Projekt DEAL 202