5 research outputs found

    Using a model-based geostatistical approach to design and analyse the prevalence of schistosomiasis in Kenya

    Get PDF
    BackgroundInfections caused by both Schistosoma mansoni and Schistosoma haematobium are endemic in Kenya, with over six million children at risk. A national school-based deworming programme was launched in 2012 with the goal of eliminating parasitic worms as a public health problem. This study used a model-based geostatistical (MBG) approach to design and analyse the impact of the programme and inform treatment strategy changes for schistosomiasis (SCH).MethodsA cross-sectional survey of 200 schools across 27 counties of Kenya was utilised. The study design, selection of the schools, and analysis followed the MBG approach, which incorporated historical data on treatment, morbidity, and environmental covariates.ResultsThe overall SCH prevalence was 5.0% (95% CI 4.9%–5.2%) and was estimated, with a high predictive probability of 0.999, to be between 1% and< 10%. The predictive probabilities at county level revealed county heterogeneity, with that of four counties estimated to be between 0% and< 1%, that of 20 counties estimated to be between 1% and< 10%, that of two counties estimated to be between 10% and< 20%, and that of one county estimated to be between 20% and< 50%.ConclusionSCH treatment requirements can now be confidently refined based on the World Health Organization’s guidelines. The four counties with prevalences of between 0% and< 1% may consider suspending treatment only in areas (i.e., sub-counties and wards) where the prevalence is< 1%

    Sensitivity Analysis of a Transmission Interruption Model for the Soil-Transmitted Helminth Infections in Kenya.

    No full text
    As the world rallies toward the endgame of soil-transmitted helminths (STH) elimination by the year 2030, there is a need for efficient and robust mathematical models that would enable STH programme managers to target the scarce resources and interventions, increase treatment coverage among specific sub-groups of the population, and develop reliable surveillance systems that meet sensitivity and specificity requirements for the endgame of STH elimination. However, the considerable complexities often associated with STH-transmission models underpin the need for specifying a large number of parameters and inputs, which are often available with considerable degree of uncertainty. Additionally, the model may behave counter-intuitive especially when there are non-linearities in multiple input-output relationships. In this study, we performed a global sensitivity analysis (GSA), based on a variance decomposition method: extended Fourier Amplitude Sensitivity Test (eFAST), to a recently developed STH-transmission model in Kenya (an STH endemic country) to; (1) robustly compute sensitivity index (SI) for each parameter, (2) rank the parameters in order of their importance (from most to least influential), and (3) quantify the influence of each parameter, singly and cumulatively, on the model output. The sensitivity analysis (SA) results demonstrated that the model outcome (STH worm burden elimination in the human host) was significantly sensitive to some key parameter groupings: combined effect of improved water source and sanitation (ϕ), rounds of treatment offered (τ), efficacy of the drug used during treatment (h), proportion of the adult population treated (g a : akin to community-wide treatment), mortality rate of the mature worms in the human host (μ), and the strength of the -dependence of worm egg production (γ). For STH control programmes to effectively reach the endgame (STH elimination in the entire community), these key parameter groupings need to be targeted since together they contribute to a strategic public health intervention

    Optimal control analysis of a transmission interruption model for the soil-transmitted helminth infections in Kenya

    No full text
    Kenya is among the countries endemic for soil-transmitted helminthiasis (STH) with over 66 subcounties and over 6 million individuals being at-risk of infection. Currently, the country is implementing mass drug administration (MDA) to all the at-risk groups as the mainstay control strategy. This study aimed to develop and analyze an optimal control (OC) model, from a transmission interruption model, to obtain an optimal control strategy from a mix of three strategies evaluated. The study used the Pontryaginʼs maximum principle to solve, numerically, the OC model. The analysis results clearly demonstrated that water and sanitation when implemented together with the MDA programme offer the best chances of eliminating these tenacious and damaging parasites. Thus, we advocate for optimal implementation of the combined mix of the two interventions in order to achieve STH elimination in Kenya, and globally, in a short implementation period of less than eight years

    Using a model-based geostatistical approach to design and analyse the prevalence of schistosomiasis in Kenya

    No full text
    Background: Infections caused by both Schistosoma mansoni and Schistosoma haematobium are endemic in Kenya, with over six million children at risk. A national school-based deworming programme was launched in 2012 with the goal of eliminating parasitic worms as a public health problem. This study used a model-based geostatistical (MBG) approach to design and analyse the impact of the programme and inform treatment strategy changes for schistosomiasis (SCH). Methods: A cross-sectional survey of 200 schools across 27 counties of Kenya was utilised. The study design, selection of the schools, and analysis followed the MBG approach, which incorporated historical data on treatment, morbidity, and environmental covariates. Results: The overall SCH prevalence was 5.0% (95% CI 4.9%–5.2%) and was estimated, with a high predictive probability of 0.999, to be between 1% and< 10%. The predictive probabilities at county level revealed county heterogeneity, with that of four counties estimated to be between 0% and< 1%, that of 20 counties estimated to be between 1% and< 10%, that of two counties estimated to be between 10% and< 20%, and that of one county estimated to be between 20% and< 50%. Conclusion: SCH treatment requirements can now be confidently refined based on the World Health Organization’s guidelines. The four counties with prevalences of between 0% and< 1% may consider suspending treatment only in areas (i.e., sub-counties and wards) where the prevalence is< 1%

    Model-based geostatistical design and analysis of prevalence for soil-transmitted helminths in Kenya:Results from ten-years of the Kenya national school-based deworming programme

    No full text
    Background Kenya is endemic for soil-transmitted helminths (STH) with over 6 million children in 27 counties currently at-risk. A national school-based deworming programme (NSBDP) was launched in 2012 with a goal to eliminate parasitic worms as a public health problem. This study used model-based geostatistical (MBG) approach to design and analyse the impact of the NSBDP and inform treatment strategy changes. Methods A cross-sectional study was used to survey 200 schools across 27 counties in Kenya. The study design, school selection and analysis followed the MBG approach which incorporated historical data on treatment, morbidity and environmental covariates to efficiently predict the helminths prevalence in Kenya. Results Overall, the NSBDP geographic area prevalence for any STH was estimated to sit between 2 % and 0.999. Species-specific thresholds were between 2 % and 0.999. Conclusions Based on the World Health Organization guidelines, STH treatment requirements can now be confidently refined. Ten counties may consider suspending treatment and implement appropriate surveillance system, while another 10 will require treatment once every two years, and the remaining seven will require treatment once every year
    corecore