7 research outputs found

    Changes in neuronal CycD/Cdk4 activity affect aging, neurodegeneration, and oxidative stress.

    Get PDF
    Mitochondrial dysfunction has been implicated in human diseases, including cancer, and proposed to accelerate aging. The Drosophila Cyclin-dependent protein kinase complex cyclin D/cyclin-dependent kinase 4 (CycD/Cdk4) promotes cellular growth by stimulating mitochondrial biogenesis. Here, we examine the neurodegenerative and aging consequences of altering CycD/Cdk4 function in Drosophila. We show that pan-neuronal loss or gain of CycD/Cdk4 increases mitochondrial superoxide, oxidative stress markers, and neurodegeneration and decreases lifespan. We find that RNAi-mediated depletion of the mitochondrial transcription factor, Tfam, can abrogate CycD/Cdk4's detrimental effects on both lifespan and neurodegeneration. This indicates that CycD/Cdk4's pathological consequences are mediated through altered mitochondrial function and a concomitant increase in reactive oxygen species. In support of this, we demonstrate that CycD/Cdk4 activity levels in the brain affect the expression of a set of 'oxidative stress' genes. Our results indicate that the precise regulation of neuronal CycD/Cdk4 activity is important to limit mitochondrial reactive oxygen species production and prevent neurodegeneration

    Changes in neuronal CycD/Cdk4 activity affect aging, neurodegeneration, and oxidative stress

    No full text
    Mitochondrial dysfunction has been implicated in human diseases, including cancer, and proposed to accelerate aging. The Drosophila Cyclin-dependent protein kinase complex cyclin D/cyclin-dependent kinase 4 (CycD/Cdk4) promotes cellular growth by stimulating mitochondrial biogenesis. Here, we examine the neurodegenerative and aging consequences of altering CycD/Cdk4 function in Drosophila. We show that pan-neuronal loss or gain of CycD/Cdk4 increases mitochondrial superoxide, oxidative stress markers, and neurodegeneration and decreases lifespan. We find that RNAi-mediated depletion of the mitochondrial transcription factor, Tfam, can abrogate CycD/Cdk4’s detrimental effects on both lifespan and neurodegeneration. This indicates that CycD/Cdk4’s pathological consequences are mediated through altered mitochondrial function and a concomitant increase in reactive oxygen species. In support of this, we demonstrate that CycD/Cdk4 activity levels in the brain affect the expression of a set of ‘oxidative stress’ genes. Our results indicate that the precise regulation of neuronal CycD/Cdk4 activity is important to limit mitochondrial reactive oxygen species production and prevent neurodegeneration

    Molecularly Evolved Thymidylate Synthase Inhibits 5-Fluorodeoxyuridine Toxicity in Human Hematopoietic Cells

    No full text
    Thymidylate synthase (TS) inhibitors, such as 5-fluorouracil (5-FU) and 5-fluorodeoxyuridine (5-FUdR), are amongst the most frequently used chemotherapeutic drugs available, although their efficacy is often limited by myelotoxicity. An emerging strategy for overcoming bone marrow toxicity involves ex vivo genetic transfer of drug resistance to autologous hematopoietic progenitor cells, followed by reimplantation of the transfected cells before chemotherapy. Here we establish that expression of mutant TS genes, selected from millions of engineered variants, renders human hematopoietic cells resistant to 5-FUdR, and identify the most efficacious variant for gene therapeutic rescue of drug-induced myelosuppression
    corecore