216 research outputs found

    100 ps time-resolved solution scattering utilizing a wide-bandwidth X-ray beam from multilayer optics

    Get PDF
    A new method of time-resolved solution scattering utilizing X-ray multilayer optics is presented

    Genetic Evidence That the Non-Homologous End-Joining Repair Pathway Is Involved in LINE Retrotransposition

    Get PDF
    Long interspersed elements (LINEs) are transposable elements that proliferate within eukaryotic genomes, having a large impact on eukaryotic genome evolution. LINEs mobilize via a process called retrotransposition. Although the role of the LINE-encoded protein(s) in retrotransposition has been extensively investigated, the participation of host-encoded factors in retrotransposition remains unclear. To address this issue, we examined retrotransposition frequencies of two structurally different LINEs—zebrafish ZfL2-2 and human L1—in knockout chicken DT40 cell lines deficient in genes involved in the non-homologous end-joining (NHEJ) repair of DNA and in human HeLa cells treated with a drug that inhibits NHEJ. Deficiencies of NHEJ proteins decreased retrotransposition frequencies of both LINEs in these cells, suggesting that NHEJ is involved in LINE retrotransposition. More precise characterization of ZfL2-2 insertions in DT40 cells permitted us to consider the possibility of dual roles for NHEJ in LINE retrotransposition, namely to ensure efficient integration of LINEs and to restrict their full-length formation

    Ontogenetic Development of Weberian Ossicles and Hearing Abilities in the African Bullhead Catfish

    Get PDF
    BACKGROUND: The weberian apparatus of otophysine fishes facilitates sound transmission from the swimbladder to the inner ear to increase hearing sensitivity. It has been of great interest to biologists since the 19(th) century. No studies, however, are available on the development of the weberian ossicles and its effect on the development of hearing in catfishes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the development of the weberian apparatus and auditory sensitivity in the catfish Lophiobagrus cyclurus. Specimens from 11.3 mm to 85.5 mm in standard length were studied. Morphology was assessed using sectioning, histology, and X-ray computed tomography, along with 3D reconstruction. Hearing thresholds were measured utilizing the auditory evoked potentials recording technique. Weberian ossicles and interossicular ligaments were fully developed in all stages investigated except in the smallest size group. In the smallest catfish, the intercalarium and the interossicular ligaments were still missing and the tripus was not yet fully developed. Smallest juveniles revealed lowest auditory sensitivity and were unable to detect frequencies higher than 2 or 3 kHz; sensitivity increased in larger specimens by up to 40 dB, and frequency detection up to 6 kHz. In the size groups capable of perceiving frequencies up to 6 kHz, larger individuals had better hearing abilities at low frequencies (0.05-2 kHz), whereas smaller individuals showed better hearing at the highest frequencies (4-6 kHz). CONCLUSIONS/SIGNIFICANCE: Our data indicate that the ability of otophysine fish to detect sounds at low levels and high frequencies largely depends on the development of the weberian apparatus. A significant increase in auditory sensitivity was observed as soon as all weberian ossicles and interossicular ligaments are present and the chain for transmitting sounds from the swimbladder to the inner ear is complete. This contrasts with findings in another otophysine, the zebrafish, where no threshold changes have been observed

    Target Site Recognition by a Diversity-Generating Retroelement

    Get PDF
    Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification

    Thermal Stabilization of an Endoglucanase by Cyclization

    Get PDF
    An intein-driven protein splicing approach allowed for the covalent linkage between the N- and C-termini of a polypeptide chain to create circular variants of the endo-β-1,3-1,4-glucanase, LicA, from Bacillus licheniformis. Two circular variants, LicA-C1 and LicA-C2, which have connecting loops of 20 and 14 amino acids, respectively, showed catalytic activities that are approximately two and three times higher, respectively, compared to that of the linear LicA (LicA-L1). The thermal stability of the circular variants was significantly increased compared to the linear form. Whereas the linear glucanase lost half of its activity after 3 min at 65 °C, the two circular variants have 6-fold (LicA-C1) and 16-fold (LicA-C2) increased half-life time of inactivation. In agreement with this, fluorescence spectroscopy and differential scanning calorimetry studies revealed that circular enzymes undergo structural changes at higher temperatures compared to that of the linear form. The effect of calcium on the conformational stability and function of the circular LicAs was also investigated, and we observed that the presence of calcium ions results in increased thermal stability. The impact of the length of the designed loops on thermal stability of the circular proteins is discussed, and it is suggested that cyclization may be an efficient strategy for the increased stability of proteins

    The prevention of contrast induced nephropathy by sarpogrelate in patients with chronic kidney disease: a study protocol for a prospective randomized controlled clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Contrast-induced nephropathy (CIN) is a serious clinical problem associated with increased morbidity and mortality, particularly in patients with chronic renal insufficiency. Although some agents including hydration with saline are being prescribed to prevent renal deterioration in these high risk patients, their efficacy is not clearly defined and debatable. Therefore additional prophylactic pretreatments are needed.</p> <p>Methods/Design</p> <p>The present study aims to investigate differences in occurrence of CIN after sarpogrelate premedication in patients with chronic kidney disease (CKD). 268 participants, aged 20-85 years with a clinical diagnosis of CKD will be recruited. They will be randomly allocated to one of two conditions: (i) routine treatment without sarpogrelate, and (ii) routine treatment with sarpogrelate (a fixed-flexible dose of 300 mg/day). The primary outcome is the occurrence of CIN during 4 weeks after receiving contrast agent.</p> <p>Discussion</p> <p>As of May 2010, there were no registered trials evaluating the therapeutic potentials of sarpogrelate in preventing for CIN. If sarpogrelate decreases the worsening of renal function and occurrence of CIN, it will provide a safe, easy and inexpensive treatment option.</p> <p>Trial registration</p> <p>NCT01165567</p

    Antioxidative protection of dietary bilberry, chokeberry and Lactobacillus plantarum HEAL19 in mice subjected to intestinal oxidative stress by ischemia-reperfusion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ischemia-reperfusion (I/R) in the intestines is an inflammatory condition which activates leukocytes and reactive oxygen species (ROS) and leads to lipid peroxidation and DNA damage. Bilberry and chokeberry fruits are rich sources of polyphenols which may act as antioxidants and prevent lipid peroxidation. Lactic acid bacteria (LAB) may improve microbial status in the intestines and increase the metabolic activity towards polyphenolic degradation. The aim of the study was to clarify antioxidative effects of bilberry and chokeberry fruits alone and with addition of a LAB-strain, <it>Lactobacillus plantarum </it>HEAL19, in an I/R-model in mice.</p> <p>Methods</p> <p>Male BALB/cJ mice were fed the experimental diets for 10 days. Diets consisted of standard chow supplemented with either bilberry (<it>Vaccinium myrtillus</it>) or chokeberry (<it>Aronia × prunifolia</it>) powder alone or in combination with the LAB-strain <it>Lactobacillus plantarum </it>HEAL19. I/R-injury was induced by holding superior mesenteric artery clamped for 30 minutes followed by reperfusion for 240 minutes. Thereafter, colonic and caecal tissues and contents were collected. Malondialdehyde (MDA) was used as indicator of lipid peroxidation and was measured by a calorimetric assay, lactobacilli were cultured on Rogosa agar plates and <it>Enterobacteriaceae </it>on VRBG agar plates, anthocyanins and phenolic acids were analysed by HPLC-DAD-ESI-MSn.</p> <p>Results</p> <p>MDA was significantly decreased in the colon of groups fed bilberry alone (p = 0.030) and in combination with <it>L. plantarum </it>HEAL19 (p = 0.021) compared to the IR-control but not in chokeberry-fed groups. Supplementation with bilberry or chokeberry alone reduced the total number of lactobacilli on the mucosa. Higher concentrations of anthocyanins were found in the colon than in the caecum content of mice. A more varied composition of different anthocyanins was also observed in the colon content compared to the caecum of bilberry-fed mice. Phenolic acids formed by microbial degradation of the dietary polyphenols in the gut could be detected. More phenolic metabolites were found in the intestines of bilberry-fed mice than in the chokeberry-fed ones.</p> <p>Conclusions</p> <p>Bilberry alone and in combination with <it>L. plantarum </it>HEAL19 exerts a better protection against lipid peroxidation than chokeberry. These dietary supplements may be used to prevent or suppress oxidative stress.</p

    Photochemical versus Thermal Synthesis of Cobalt Oxyhydroxide Nanocrystals

    Get PDF
    Photochemical methods facilitate the generation, isolation, and study of metastable nanomaterials having unusual size, composition, and morphology. These harder-to-isolate and highly reactive phases, inaccessible using conventional high-temperature pyrolysis, are likely to possess enhanced and unprecedented chemical, electromagnetic, and catalytic properties. We report a fast, low-temperature and scalable photochemical route to synthesize very small (~3 nm) monodisperse cobalt oxyhydroxide (Co(O)OH) nanocrystals. This method uses readily and commercially available pentaamminechlorocobalt(III) chloride, [Co(NH3) 5Cl]Cl2, under acidic or neutral pH and proceeds under either near-UV (350 nm) or Vis (575 nm) illumination. Control experiments showed that the reaction proceeds at competent rates only in the presence of light, does not involve a free radical mechanism, is insensitive to O 2, and proceeds in two steps: (1) Aquation of [Co(NH3) 5Cl] 2+ to yield [Co(NH3) 5(H2O)] 3+, followed by (2) slow photoinduced release of NH3 from the aqua complex. This reaction is slow enough for Co(O)OH to form but fast enough so that nanocrystals are small (ca. 3 nm). The alternative dark thermal reaction proceeds much more slowly and produces much larger (~250 nm) polydisperse Co(O)OH aggregates. UV-Vis absorption measurements and ab initio calculations yield a Co(O)OH band gap of 1.7 eV. Fast thermal annealing of Co(O)OH nanocrystals leads to Co3O4 nanocrystals with overall retention of nanoparticle size and morphology. Thermogravimetric analysis shows that oxyhydroxide to mixed-oxide phase transition occurs at significantly lower temperatures (up to T = 64 degrees C) for small nanocrystals compared with the bulk

    Conservation of intron and intein insertion sites: implications for life histories of parasitic genetic elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inteins and introns are genetic elements that are removed from proteins and RNA after translation or transcription, respectively. Previous studies have suggested that these genetic elements are found in conserved parts of the host protein. To our knowledge this type of analysis has not been done for group II introns residing within a gene. Here we provide quantitative statistical support from an analyses of proteins that host inteins, group I introns, group II introns and spliceosomal introns across all three domains of life.</p> <p>Results</p> <p>To determine whether or not inteins, group I, group II, and spliceosomal introns are found preferentially in conserved regions of their respective host protein, conservation profiles were generated and intein and intron positions were mapped to the profiles. Fisher's combined probability test was used to determine the significance of the distribution of insertion sites across the conservation profile for each protein. For a subset of studied proteins, the conservation profile and insertion positions were mapped to protein structures to determine if the insertion sites correlate to regions of functional activity. All inteins and most group I introns were found to be preferentially located within conserved regions; in contrast, a bacterial intein-like protein, group II and spliceosomal introns did not show a preference for conserved sites.</p> <p>Conclusions</p> <p>These findings demonstrate that inteins and group I introns are found preferentially in conserved regions of their respective host proteins. Homing endonucleases are often located within inteins and group I introns and these may facilitate mobility to conserved regions. Insertion at these conserved positions decreases the chance of elimination, and slows deletion of the elements, since removal of the elements has to be precise as not to disrupt the function of the protein. Furthermore, functional constrains on the targeted site make it more difficult for hosts to evolve immunity to the homing endonuclease. Therefore, these elements will better survive and propagate as molecular parasites in conserved sites. In contrast, spliceosomal introns and group II introns do not show significant preference for conserved sites and appear to have adopted a different strategy to evade loss.</p
    corecore