57 research outputs found

    Gremlin Enhances the Determined Path to Cardiomyogenesis

    Get PDF
    BACKGROUND: The critical event in heart formation is commitment of mesodermal cells to a cardiomyogenic fate, and cardiac fate determination is regulated by a series of cytokines. Bone morphogenetic proteins (BMPs) and fibroblast growth factors have been shown to be involved in this process, however additional factors needs to be identified for the fate determination, especially at the early stage of cardiomyogenic development. METHODOLOGY/PRINCIPAL FINDINGS: Global gene expression analysis using a series of human cells with a cardiomyogenic potential suggested Gremlin (Grem1) is a candidate gene responsible for in vitro cardiomyogenic differentiation. Grem1, a known BMP antagonist, enhanced DMSO-induced cardiomyogenesis of P19CL6 embryonal carcinoma cells (CL6 cells) 10-35 fold in an area of beating differentiated cardiomyocytes. The Grem1 action was most effective at the early differentiation stage when CL6 cells were destined to cardiomyogenesis, and was mediated through inhibition of BMP2. Furthermore, BMP2 inhibited Wnt/beta-catenin signaling that promoted CL6 cardiomyogenesis. CONCLUSIONS/SIGNIFICANCE: Grem1 enhances the determined path to cardiomyogenesis in a stage-specific manner, and inhibition of the BMP signaling pathway is involved in initial determination of Grem1-promoted cardiomyogenesis. Our results shed new light on renewal of the cardiovascular system using Grem1 in human

    IgA Vasculitis with Simultaneous Cardiopulmonary Involvement

    No full text

    The Gene Expression Profiling of Concentric and Eccentric Cardiac Hypertrophy

    No full text

    Promotion of Cardiac Regeneration by Cardiac Stem Cells

    No full text

    A case of vertebral arteriovenous fistula in a patient undergoing maintenance hemodialysis

    No full text
    Abstract Background Vertebral arteriovenous fistula (AVF) is an uncommon vascular disorder and defined as abnormal connections of the extracranial vertebral artery or its branches into the neighboring vein or deep venous plexus. This can be spontaneous or traumatic in origin. Spontaneous cases may be congenital or associated with dysplasia of vascular wall. Traumatic cases are due either to blunt or penetrating trauma, or iatrogenic trauma. Case presentation A vertebral AVF was detected by carotid duplex ultrasonography, and an endovascular treatment was successfully performed in a 72-year-old woman with 1 year history of hemodialysis. Conclusion An extensive observation by carotid duplex ultrasonography is needed to detect vertebral AVF in patients who have a history of dialysis catheter insertion to internal jugular vein

    Microarray analysis of Akt1 activation in transgenic mouse hearts reveals transcript expression profiles associated with compensatory hypertrophy and failure

    No full text
    To investigate molecular mechanisms involved in the development of cardiac hypertrophy and heart failure, we developed a tetracycline-regulated transgenic system to conditionally switch a constitutively active form of the Akt1 protein kinase on or off in the adult heart. Short-term activation (2 wk) of Akt1 resulted in completely reversible hypertrophy with maintained contractility. In contrast, chronic Akt1 activation (6 wk) induced extensive cardiac hypertrophy, severe contractile dysfunction, and massive interstitial fibrosis. The focus of this study was to create a transcript expression profile of the heart as it undergoes reversible Akt1-mediated hypertrophy and during the transition from compensated hypertrophy to heart failure. Heart tissue was analyzed before transgene induction, 2 wk after transgene induction, 2 wk of transgene induction followed by 2 days of repression, 6 wk after transgene induction, and 6 wk of transgene induction followed by 2 wk of repression. Acute overexpression of Akt1 (2 wk) leads to changes in the expression of 826 transcripts relative to noninduced hearts, whereas chronic induction (6 wk) led to changes in the expression of 1,611, of which 65% represented transcripts that were regulated during the pathological phase of heart growth. Another set of genes identified was uniquely regulated during heart regression but not growth, indicating that nonoverlapping transcription programs participate in the processes of cardiac hypertrophy and atrophy. These data define the gene regulatory programs downstream of Akt that control heart size and contribute to the transition from compensatory hypertrophy to heart failure. Copyright © 2006 the American Physiological Society
    • …
    corecore