97 research outputs found

    A Case of Multiple Pilosebaceous Cysts

    Get PDF
    Multiple pilosebaceous cysts include the entities of steatocystoma multiplex and eruptive vellus hair cysts (EVHCs). Multiple pilosebaceous cysts are proposed to be one entity originating in the pilosebaceous duct, since steatocystoma multiplex and EVHCs are frequently present concomitantly and are caused by a cystic change in the same pilosebaceous duct. Here, we describe a patient with yellowish papules, 3–8 mm in diameter, on the neck and skin-colored or light-brown papules, 1–3 mm in diameter, on the neck, chest and upper abdomen. The smaller cysts were histopathologically diagnosed as EVHCs. The larger cysts had both features of EVHCs and steatocystoma multiplex. Therefore, a diagnosis of these lesions was made as multiple pilosebaceous cysts. Our case supports the proposition that multiple pilosebaceous cysts are a more appropriate diagnosis than the terms of EVHCs and steatocystoma multiplex

    Involvement of Propionibacterium acnes in the Augmentation of Lipogenesis in Hamster Sebaceous Glands In Vivo and In Vitro

    Get PDF
    Propionibacterium acnes is considered to be involved in the aggravation of acne vulgaris, but it remains unclear whether P. acnes directly influences lipogenesis in sebaceous glands. In this study, we showed that a culture medium of P. acnes (acnes-CM) and formalin-killed P. acnes (F-acnes) prepared from P. acnes strains, JCM6473 and JCM6425, intracellularly augmented lipid droplet formation and triacylglycerol (TG) synthesis in undifferentiated and insulin-differentiated hamster sebocytes. Acnes-CM and F-acnes prepared from four clinical P. acnes strains elicited the same lipogenesis augmentation. The augmented TG production resulted from an increase in the diacylglycerol acyltransferase activity. Topical application of acnes-CM to the skin of hamster auricles every day for 4 weeks revealed that sebum accumulation was augmented in sebaceous glands and ducts. Furthermore, both acnes-CM and F-acnes increased the production of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), a cytochrome P450 (CYP)-linked sebaceous lipogenic factor, in differentiated sebocytes. A CYP inhibitor, SKF-525A, decreased the acnes-CM- and F-acnes-augmented production of TG and 15d-PGJ2. Thus, to our knowledge these results provide previously unreported evidence that P. acnes directly participates in the augmentation of sebaceous lipogenesis through a proposed mechanism in which an increase of 15d-PGJ2 production through the CYP pathway is closely associated with the enhancement of TG production

    Wortmannin, a specific inhibitor of phosphatidylinositol-3 kinase, blocks osteoclastic bone resorption

    Get PDF
    AbstractThe biological role of phosphatidylinositol (PI)-3 kinase was examined in osteoclast-like multinucleated cells (OCLs) formed in co-cultures of mouse osteoblastic cells and bone marrow cells. The expression of PI-3 kinase in OCLs was confirmed by Western blot analysis. Wortmannin (WT), a specific inhibitor of PI-3 kinase, inhibited PI-3 kinase activity in OCLs both in vitro and in vivo. WT also inhibited pit-forming activity on dentine slices and disrupted a ringed structure of F-actin-containing dots (an actin ring) in OCLs in a dose-dependent manner. The inhibitory profiles of WT for pit and actin ring formation were similar to that for PI-3 kinase activity in OCLs. Electron microscopic analysis revealed that OCLs treated with WT did not form ruffled borders. Instead, numerous electron lucent vacuoles of differing sizes were found throughout the cytoplasm. These results suggest that PI-3 kinase is important in osteoclastic bone resorption

    Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Streptococcus mutans </it>is the major pathogen of dental caries, and it occasionally causes infective endocarditis. While the pathogenicity of this species is distinct from other human pathogenic streptococci, the species-specific evolution of the genus <it>Streptococcus </it>and its genomic diversity are poorly understood.</p> <p>Results</p> <p>We have sequenced the complete genome of <it>S. mutans </it>serotype <it>c </it>strain NN2025, and compared it with the genome of UA159. The NN2025 genome is composed of 2,013,587 bp, and the two strains show highly conserved core-genome. However, comparison of the two <it>S. mutans </it>strains showed a large genomic inversion across the replication axis producing an X-shaped symmetrical DNA dot plot. This phenomenon was also observed between other streptococcal species, indicating that streptococcal genetic rearrangements across the replication axis play an important role in <it>Streptococcus </it>genetic shuffling. We further confirmed the genomic diversity among 95 clinical isolates using long-PCR analysis. Genomic diversity in <it>S. mutans </it>appears to occur frequently between insertion sequence (IS) elements and transposons, and these diversity regions consist of restriction/modification systems, antimicrobial peptide synthesis systems, and transporters. <it>S. mutans </it>may preferentially reject the phage infection by clustered regularly interspaced short palindromic repeats (CRISPRs). In particular, the CRISPR-2 region, which is highly divergent between strains, in NN2025 has long repeated spacer sequences corresponding to the streptococcal phage genome.</p> <p>Conclusion</p> <p>These observations suggest that <it>S. mutans </it>strains evolve through chromosomal shuffling and that phage infection is not needed for gene acquisition. In contrast, <it>S. pyogenes </it>tolerates phage infection for acquisition of virulence determinants for niche adaptation.</p

    Intratumoral Injection of Propionibacterium acnes Suppresses Malignant Melanoma by Enhancing Th1 Immune Responses

    Get PDF
    Malignant melanoma (MM) is an aggressive cutaneous malignancy associated with poor prognosis; many putatively therapeutic agents have been administered, but with mostly unsuccessful results. Propionibacterium acnes (P. acnes) is an aerotolerant anaerobic gram-positive bacteria that causes acne and inflammation. After being engulfed and processed by phagocytes, P. acnes induces a strong Th1-type cytokine immune response by producing cytokines such as IL-12, IFN-γ and TNF-α. The characteristic Th2-mediated allergic response can be counteracted by Th1 cytokines induced by P. acnes injection. This inflammatory response induced by P. acnes has been suggested to have antitumor activity, but its effect on MM has not been fully evaluated
    corecore