56 research outputs found
MOIRCS Deep Survey. VII: NIR Morphologies of Star-forming Galaxies at Redshift z~1
We investigate rest-frame near-infrared (NIR) morphologies of a sample of 139
galaxies with M_{s} >= 1 x 10^{10} M_{sun} at z=0.8-1.2 in the GOODS-North
field using our deep NIR imaging data (MOIRCS Deep Survey, MODS). We focus on
Luminous Infrared Galaxies (LIRGs), which dominate high star formation rate
(SFR) density at z~1, in the sample identified by cross-correlating with the
Spitzer/MIPS 24um source catalog. We perform two-dimensional light profile
fitting of the z~1 galaxies in the Ks-band (rest-frame J-band) with a single
component Sersic model. We find that at z~1, ~90% of LIRGs have low Sersic
indices (n<2.5, similar to disk-like galaxies) in the Ks-band, and those
disk-like LIRGs consist of ~60% of the whole disk-like sample above M_{s} >= 3
x 10^{10} M_{sun}. The z~1 disk-like LIRGs are comparable or ~20% small at a
maximum in size compared to local disk-like galaxies in the same stellar mass
range. If we examine rest-frame UV-optical morphologies using the HST/ACS
images, the rest-frame B-band sizes of the z~1 disk-like galaxies are
comparable to those of the local disk-like galaxies as reported by previous
studies on size evolution of disk-like galaxies in the rest-frame optical band.
Measuring color gradients (galaxy sizes as a function of wavelength) of the z~1
and local disk-like galaxies, we find that the z~1 disk-like galaxies have 3-5
times steeper color gradient than the local ones. Our results indicate that (i)
more than a half of relatively massive disk-like galaxies at z~1 are in violent
star formation epochs observed as LIRGs, and also (ii) most of those LIRGs are
constructing their fundamental disk structure vigorously. The high SFR density
in the universe at z~1 may be dominated by such star formation in disk region
in massive galaxies.Comment: 16 pages, 15 figures, accepted for publication in PASJ. Catalog data
will be available at http://astr.tohoku.ac.jp/MODS/wiki/index.php soo
Assembly of Massive Galaxies in a High-z Protocluster
We present the results of wide-field deep JHK imaging of the SSA22 field
using MOIRCS instrument equipped with Subaru telescope. The observed field is
112 arcmin^2 in area, which covers the z=3.1 protocluster characterized by the
overdensities of Ly Alpha emitters (LAEs) and Ly Alpha Blobs (LABs). The 5
sigma limiting magnitude is K_{AB} = 24.3. We extract the potential
protocluster members from the K-selected sample by using the multi-band
photometric-redshift selection as well as the simple color cut for distant red
galaxies (DRGs; J-K_{AB}>1.4). The surface number density of DRGs in our
observed fields shows clear excess compared with those in the blank fields, and
the location of the densest area whose projected overdensity is twice the
average coincides with the large-scale density peak of LAEs. We also found that
K-band counterparts with z_{phot} = 3.1 are detected for 75% (15/20) of the
LABs within their Ly Alpha halo, and the 40 % (8/20) of LABs have multiple
components, which gives a direct evidence of the hierarchical multiple merging
in galaxy formation. The stellar mass ofLABs correlates with their luminosity,
isophotal area, and the Ly Alpha velocity widths, implying that the physical
scale and the dynamical motion of Ly Alpha emission are closely related to
their previous star-formation activities. Highly dust-obscured galaxies such as
hyper extremely red objects (HEROs; J-K_{AB}>2.1) and plausible K-band
counterparts of submillimeter sources are also populated in the high density
region.Comment: 21pages, accepted for publication in Astrophysical Journa
Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy
Confocal laser microscopy (CLM) is a powerful tool in life science research and industrial inspection, and its image acquisition rate is boosted by scan-less imaging techniques. However, the optical-intensity-based image contrast in CLM makes it difficult to visualize transparent non-fluorescent objects or reflective objects with nanometer unevenness. In this paper, we introduce an optical frequency comb (OFC) to scan-less CLM to give the optical-phase-based image contrast. One-dimensional (1D) image pixels of a sample are separately encoded onto OFC modes via 1D spectral encoding by using OFC as an optical carrier of amplitude and phase with a vast number of discrete frequency channels. Then, line-field confocal information of amplitude and phase are decoded from a mode-resolved OFC amplitude and phase spectra obtained by dual-comb spectroscopy. The proposed confocal phase imaging will further expand the application fields of CLM
Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy
Confocal laser microscopy (CLM) is a powerful tool in life science research and industrial inspection, and its image acquisition rate is boosted by scan-less imaging techniques. However, the optical-intensity-based image contrast in CLM makes it difficult to visualize transparent non-fluorescent objects or reflective objects with nanometer unevenness. In this paper, we introduce an optical frequency comb (OFC) to scan-less CLM to give the optical-phase-based image contrast. One-dimensional (1D) image pixels of a sample are separately encoded onto OFC modes via 1D spectral encoding by using OFC as an optical carrier of amplitude and phase with a vast number of discrete frequency channels. Then, line-field confocal information of amplitude and phase are decoded from a mode-resolved OFC amplitude and phase spectra obtained by dual-comb spectroscopy. The proposed confocal phase imaging will further expand the application fields of CLM
Cevimeline enhances the excitability of rat superior salivatory neurons
Cevimeline, a therapeutic drug for xerostomia, is an agonist of muscarinic acetylcholine receptors (mAChRs), and directly stimulates the peripheral mAChRs of the salivary glands. Since cevimeline is distributed in the brain after its oral administration, it is possible that it affects the central nervous system. However, it is unknown how cevimeline affects the superior salivatory (SS) neurons, which control submandibular salivation. In the present study, we examined the effects of cevimeline on the SS neurons using the whole-cell patch-clamp technique in brain slices. In Wistar rats (6-10 days), the SS neurons were retrogradely labeled by Texas Red applied to the chorda-lingual nerve. Two days after injection, whole-cell recordings were obtained from the labeled cells, and miniature excitatory postsynaptic currents (mEPSCs) were examined. Cevimeline induced the inward currents dose-dependently and increased the frequency of mEPSCs. Therefore, it is suggested that cevimeline enhances the excitability via post- and presynaptic muscarinic receptors in the rat SS neurons. In conclusion, cevimeline may enhance the excitability of the SS neurons
Immunohistochemical study on the distribution and origin of GABAergic nerve terminals in the superior salivatory nucleus
The superior salivatory nucleus (SSN) is the primary parasympathetic center controlling submandibular salivatory secretion. Our previous electrophysiological study revealed that many SSN neurons receive GABAergic and glycinergic synaptic inputs. In the present study, we examined the distribution of GABAergic and glycinergic nerve terminals, GABAA receptors in the SSN, and the origin of GABAergic nerve terminals innervating the SSN. Glutamic acid decarboxylase (GAD) and glycine transporter 2 (GLYT2) were used as markers of GABAergic and glycinergic nerve terminals, respectively. GAD- and GLYT2-positive nerve terminals and GABAA receptors were examined immunohistochemically in SSN neurons labeled by the retrograde axonal transport of FastBlue (FB) injected into the chorda-lingual nerve. The SSN neurons abundantly contained GAD-positive nerve terminals and GABAA receptors, suggesting that SSN neurons undergo strong GABAergic inhibition. The origin of GABAergic terminals was examined in neurons labeled by the retrograde transport of FluoroGold (FG) injected into the SSN. GAD was used as a marker of GABAergic neurons. Numerous FG-labeled neurons were found in the forebrain and brainstem. However, in FG-labeled neurons, GAD-positive neurons were occasionally observed in the reticular formation of the brainstem. These findings suggest that SSN neurons mainly receive GABAergic projections from the reticular formation
Up-regulation of brain-derived neurotrophic factor in the dorsal root ganglion of the rat bone cancer pain model
Metastatic bone cancer causes severe pain, but current treatments often provide insufficient pain relief. One of the reasons is that mechanisms underlying bone cancer pain are not solved completely. Our previous studies have shown that brain-derived neurotrophic factor (BDNF), known as a member of the neurotrophic family, is an important molecule in the pathological pain state in some pain models. We hypothesized that expression changes of BDNF may be one of the factors related to bone cancer pain; in this study, we investigated changes of BDNF expression in dorsal root ganglia in a rat bone cancer pain model. As we expected, BDNF mRNA (messenger ribonucleic acid) and protein were significantly increased in L3 dorsal root ganglia after intra-tibial inoculation of MRMT-1 rat breast cancer cells. Among the eleven splice-variants of BDNF mRNA, exon 1–9 variant increased predominantly. Interestingly, the up-regulation of BDNF is localized in small neurons (mostly nociceptive neurons) but not in medium or large neurons (non-nociceptive neurons). Further, expression of nerve growth factor (NGF), which is known as a specific promoter of BDNF exon 1–9 variant, was significantly increased in tibial bone marrow. Our findings suggest that BDNF is a key molecule in bone cancer pain, and NGF-BDNF cascade possibly develops bone cancer pain
- …