2,158 research outputs found

    Spin Squeezing via One-Axis Twisting with Coherent Light

    Get PDF
    We propose a new method of spin squeezing of atomic spin, based on the interactions between atoms and off-resonant light which are known as paramagnetic Faraday rotation and fictitious magnetic field of light. Since the projection process, squeezed light, or special interactions among the atoms are not required in this method, it can be widely applied to many systems. The attainable range of the squeezing parameter is S^{-2/5}, where S is the total spin, which is limited by additional fluctuations imposed by coherent light and the spherical nature of the spin distribution.Comment: 4 pages,6 figure

    The performance of thin NaI(Tl) scintillator plate for dark matter search

    Full text link
    A thin (0.05cm) and wide area (5cmX5cm) NaI(Tl) scintillator was developed. The performance of the thin NaI(Tl) plate, energy resolution, single photoelectron energy and position sensitivity were tested. An excellent energy resolution of 20% (FWHM) at 60keV was obtained. The single photoelectron energy was calculated to be approximately 0.42 0.02keV. Position information in the 5cmx5cm area of the detector was also obtained by analyzing the ratio of the number of photons collected at opposite ends of the detector. The position resolution was obtained to be 1cm (FWHM) in the 5cmx5cm area.Comment: 10 pages. Accepted to Journal of Physical Society of Japa

    Measurement of Single and Double Spin-Flip Probabilities in Inelastic Deuteron Scattering on 12C at 270 MeV

    Get PDF
    The deuteron single and double spin-flip probabilities, S1 and S2, have been measured for the 12C(pol{d},pol{d}') reaction at Ed = 270 MeV for an excitation energy range between 4 and 24 MeV and a scattering angular range between Theta_lab = 2.5 and 7.5 deg. The extracted S1 exhibits characteristic values depending on the structure of the excited state. The S2 is close to zero over the measured excitation energy range. The SFP angular distribution data for the 2+ (4.44 MeV) and 1+ (12.71 MeV) states are well described by the microscopic DWIA calculations

    Involvement of (pro)renin receptor in the glomerular filtration barrier

    Get PDF
    (Pro)renin receptor-bound prorenin not only causes the generation of angiotensin II via the nonproteolytic activation of prorenin, it also activates the receptor’s own intracellular signaling pathways independent of the generated angiotensin II. Within the kidneys, the (pro)renin receptor is not only present in the glomerular mesangium, it is also abundant in podocytes, which play an important role in the maintenance of the glomerular filtration barrier. Recent in vivo studies have demonstrated that the overexpression of the (pro)renin receptor to a degree similar to that observed in hypertensive rat kidneys leads to slowly progressive nephropathy with proteinuria. In addition, the handle region peptide, which acts as a decoy peptide and competitively inhibits the binding of prorenin to the receptor, is more beneficial than an angiotensin-converting enzyme inhibitor with regard to alleviating proteinuria and glomerulosclerosis in experimental animal models of diabetes and essential hypertension. Thus, the (pro)renin receptor may be upregulated in podocytes under hypertensive conditions and may contribute to the breakdown of the glomerular filtration barrier

    Complete Set of Polarization Transfer Observables for the 12C(p,n)^{12}{\rm C}(p,n) Reaction at 296 MeV and 0∘^{\circ}

    Full text link
    A complete set of polarization transfer observables has been measured for the 12C(p,n)^{12}{\rm C}(p,n) reaction at Tp=296MeVT_p=296 {\rm MeV} and ξlab=0∘\theta_{\rm lab}=0^{\circ}. The total spin transfer Σ(0∘)\Sigma(0^{\circ}) and the observable f1f_1 deduced from the measured polarization transfer observables indicate that the spin--dipole resonance at Ex≃7MeVE_x \simeq 7 {\rm MeV} has greater 2−2^- strength than 1−1^- strength, which is consistent with recent experimental and theoretical studies. The results also indicate a predominance of the spin-flip and unnatural-parity transition strength in the continuum. The exchange tensor interaction at a large momentum transfer of Q≃3.6fm−1Q \simeq 3.6 {\rm fm}^{-1} is discussed.Comment: 4 pages, 4 figure

    Cross sections for the excitation of isovector charge-exchange resonances in 208Tl

    Full text link
    The Glauber approximation for the treatment of heavy-ion scattering, has already been shown to give reliable predictions for the reaction cross section in the particular case of intermediate energy charge-exchange processes. In the present work, we couple a Glauber-type model to microscopic Random Phase Approximation calculations of the charge-exchange excitations of 208^{208}Pb. The aim is to solve the longstanding question whether the very elusive charge-exchange isovector monopole has been really identified in the past experiments, or other multipoles were prevalent in the observed spectra.Comment: text + 4 figures; accepted for publication in Phys. Rev.
    • 

    corecore