22 research outputs found

    Detecting CNN-Generated Facial Images in Real-World Scenarios

    Get PDF
    Artificial, CNN-generated images are now of such high quality that humans have trouble distinguishing them from real images. Several algorithmic detection methods have been proposed, but these appear to generalize poorly to data from unknown sources, making them infeasible for real-world scenarios. In this work, we present a framework for evaluating detection methods under real-world conditions, consisting of cross-model, cross-data, and post-processing evaluation, and we evaluate state-of-the-art detection methods using the proposed framework. Furthermore, we examine the usefulness of commonly used image pre-processing methods. Lastly, we evaluate human performance on detecting CNN-generated images, along with factors that influence this performance, by conducting an online survey. Our results suggest that CNN-based detection methods are not yet robust enough to be used in real-world scenarios.Comment: Accepted to the workshop on Media Forensics at CVPR 202

    Human ApoE ε2 promotes regulatory mechanisms of bioenergetic and synaptic function in female brain: a focus on V-type H+-ATPase

    Get PDF
    Humans possess three major isoforms of the apolipoprotein E (ApoE) gene encoded by three alleles: ApoE ε2 (ApoE2), ApoE ε3 (ApoE3), and ApoE ε4 (ApoE4). It is established that the three ApoE isoforms confer differential susceptibility to Alzheimer’s disease (AD); however, an in-depth molecular understanding of the underlying mechanisms is currently unavailable. In this study, we examined the cortical proteome differences among the three ApoE isoforms using 6-month-old female, human ApoE2, ApoE3, and ApoE4 gene-targeted replacement mice and two-dimensional proteomic analyses. The results reveal that the three ApoE brains differ primarily in two areas: cellular bioenergetics and synaptic transmission. Of particular significance, we show for the first time that the three ApoE brains differentially express a key component of the catalytic domain of the V-type H+-ATPase (Atp6v), a proton pump that mediates the concentration of neurotransmitters into synaptic vesicles and thus is crucial in synaptic transmission. Specifically, our data demonstrate that ApoE2 brain exhibits significantly higher levels of the B subunit of Atp6v (Atp6v1B2) when compared to both ApoE3 and ApoE4 brains, with ApoE4 brain exhibiting the lowest expression. Our additional analyses show that Atp6v1B2 is significantly impacted by aging and AD pathology and the data suggest that Atp6v1B2 deficiency could play a role in the progressive loss of synaptic integrity during early development of AD. Collectively, our findings indicate that human ApoE isoforms differentially modulate regulatory mechanisms of bioenergetic and synaptic function in female brain. A more efficient and robust status in both areas could serve as a potential mechanism contributing to the neuroprotective and cognition-favoring properties associated with the ApoE2 genotype

    Audio-Enhanced Text-to-Video Retrieval using Text-Conditioned Feature Alignment

    Full text link
    Text-to-video retrieval systems have recently made significant progress by utilizing pre-trained models trained on large-scale image-text pairs. However, most of the latest methods primarily focus on the video modality while disregarding the audio signal for this task. Nevertheless, a recent advancement by ECLIPSE has improved long-range text-to-video retrieval by developing an audiovisual video representation. Nonetheless, the objective of the text-to-video retrieval task is to capture the complementary audio and video information that is pertinent to the text query rather than simply achieving better audio and video alignment. To address this issue, we introduce TEFAL, a TExt-conditioned Feature ALignment method that produces both audio and video representations conditioned on the text query. Instead of using only an audiovisual attention block, which could suppress the audio information relevant to the text query, our approach employs two independent cross-modal attention blocks that enable the text to attend to the audio and video representations separately. Our proposed method's efficacy is demonstrated on four benchmark datasets that include audio: MSR-VTT, LSMDC, VATEX, and Charades, and achieves better than state-of-the-art performance consistently across the four datasets. This is attributed to the additional text-query-conditioned audio representation and the complementary information it adds to the text-query-conditioned video representation

    A deletion of FGFR2 creating a chimeric IIIb/IIIc exon in a child with Apert syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signalling by fibroblast growth factor receptor type 2 (FGFR2) normally involves a tissue-specific alternative splice choice between two exons (IIIb and IIIc), which generates two receptor isoforms (FGFR2b and FGFR2c respectively) with differing repertoires of FGF-binding specificity. Here we describe a unique chimeric IIIb/c exon in a patient with Apert syndrome, generated by a non-allelic homologous recombination event.</p> <p>Case Presentation</p> <p>We present a child with Apert syndrome in whom routine genetic testing had excluded the <it>FGFR2 </it>missense mutations commonly associated with this disorder. The patient was found to harbour a heterozygous 1372 bp deletion between <it>FGFR2 </it>exons IIIb and IIIc, apparently originating from recombination between 13 bp of identical DNA sequence present in both exons. The rearrangement was not present in the unaffected parents.</p> <p>Conclusions</p> <p>Based on the known pathogenesis of Apert syndrome, the chimeric FGFR2 protein is predicted to act in a dominant gain-of-function manner. This is likely to result from its expression in mesenchymal tissues, where retention of most of the residues essential for FGFR2b binding activity would result in autocrine activation. This report adds to the repertoire of rare cases of Apert syndrome for which a pathogenesis based on atypical <it>FGFR2 </it>rearrangements can be demonstrated.</p

    Riding the saddle point: asymptotics of the capacity-achieving simple decoder for bias-based traitor tracing

    Get PDF
    We study the asymptotic-capacity-achieving score function that was recently proposed by Oosterwijk et al. for bias-based traitor tracing codes. For the bias function, we choose the Dirichlet distribution with a cutoff. Using Bernstein’s inequality and Bennett’s inequality, we upper bound the false-positive and false-negative error probabilities. From these bounds we derive sufficient conditions for the scheme parameters. We solve these conditions in the limit of large coalition size c0 and obtain asymptotic solutions for the cutoff, the sufficient code length, and the corresponding accusation threshold. We find that the code length converges to its asymptote approximately as c0 −1/2, which is faster than the c0 −1/3 of Tardos’ score function. MSC:94B6

    Riding the Saddle Point : asymptotics of the capacity-achieving simple decoder for bias-based traitor tracing

    No full text
    We study the asymptotic-capacity-achieving score function that was recently proposed by Oosterwijk et al. for bias-based traitor tracing codes. For the bias function we choose the Dirichlet distribution with a cutoff. Using Bernstein's inequality and Bennett's inequality, we upper bound the false positive and false negative error probabilities. From these bounds we derive sufficient conditions for the scheme parameters. We solve these conditions in the limit of large coalition size c0c_0 and obtain asymptotic solutions for the cutoff, the sufficient code length and the corresponding accusation threshold. The code length converges to its asymptote approximately as c0−1/2c_0^{-1/2}, which is faster than the c0−1/3c_0^{-1/3} of Tardos' score function. Keywords: traitor tracin
    corecore