70 research outputs found

    Scleroderma Renal Crisis: A Pathology Perspective

    Get PDF
    Scleroderma renal crisis (SRC) is an infrequent but serious complication of systemic sclerosis (SSc). It is associated with increased vascular permeability, activation of coagulation cascade, and renin secretion, which may lead to the acute renal failure typically associated with accelerated hypertension. The histologic picture of SRC is that of a thrombotic microangiopathy process with prominent small vessel involvement manifesting as myxoid intimal changes, thrombi, onion skin lesions, and/or fibrointimal sclerosis. Renal biopsies play an important role in confirming the clinical diagnosis, excluding overlapping/superimposed diseases that might lead to acute renal failure in SSc patients, helping to predict the clinical outcome and optimizing patient management. Kidney transplantation may be the only treatment option available for a subset of SRC patients who develop end-stage renal failure despite aggressive angiotensin-converting enzyme inhibitor therapy. However, the posttransplant outcome for SSc patients is currently suboptimal compared to the general renal transplant population

    T cell repertoire profiling in allografts and native tissues in recipients with COVID–19 after solid organ transplantation: Insight into T cell–mediated allograft protection from viral infection

    Get PDF
    IntroductionThe effects of the SARS-CoV-2 virus on the body, and why the effects are more severe in certain patients, remain incompletely understood. One population of special interest is transplant recipients because of their immunosuppressed state. Understanding the pathophysiology of graft dysfunction in transplant patients with the COVID-19 viral syndrome is important for prognosticating the risk to the graft as well as understanding how best to prevent and, if necessary, treat graft injury in these patients.MethodsWe analyzed multiple types of solid organ transplant recipients (liver, kidney, heart or lung) at our institution who died from SARS-CoV-2 and underwent autopsy (n = 6) or whose grafts were biopsied during active SARS-CoV-2 infection (n = 8). Their serum inflammatory markers were examined together with the histological appearance, viral load, and TCR repertoire of their graft tissue and, for autopsy patients, several native tissues.ResultsHistology and clinical lab results revealed a systemic inflammatory pattern that included elevated inflammatory markers and diffuse tissue damage regardless of graft rejection. Virus was detected throughout all tissues, although most abundant in lungs. The TCR repertoire was broadly similar throughout the tissues of each individual, with greater sharing of dominant clones associated with more rapid disease course. There was no difference in viral load or clonal distribution of overall, COVID-associated, or putative SARS-CoV-2-specific TCRs between allograft and native tissue. We further demonstrated that SARSCoV-2-specific TCR sequences in transplant patients lack a donor HLArestricted pattern, regardless of distribution in allograft or native tissues,suggesting that recognition of viral antigens on infiltrating recipient cells can effectively trigger host T cell anti-viral responses in both the host and graft.DiscussionOur findings suggest a systemic immune response to the SARS-CoV-2 virus in solid organ transplant patients that is not associated with rejection and consistent with a largely destructive effect of recipient HLA-restricted T cell clones that affects donor and native organs similarly

    The Banff 2022 Kidney Meeting Work Plan:Data-driven refinement of the Banff Classification for renal allografts

    Get PDF
    The XVIth Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from September 19 to 23, 2022, as a joint meeting with the Canadian Society of Transplantation. In addition to a key focus on the impact of microvascular inflammation and biopsy-based transcript analysis on the Banff Classification, further sessions were devoted to other aspects of kidney transplant pathology, in particular T cell–mediated rejection, activity and chronicity indices, digital pathology, xenotransplantation, clinical trials, and surrogate endpoints. Although the output of these sessions has not led to any changes in the classification, the key role of Banff Working Groups in phrasing unanswered questions, and coordinating and disseminating results of investigations addressing these unanswered questions was emphasized. This paper summarizes the key Banff Meeting 2022 sessions not covered in the Banff Kidney Meeting 2022 Report paper and also provides an update on other Banff Working Group activities relevant to kidney allografts.</p

    The Banff 2022 Kidney Meeting Work Plan:Data-driven refinement of the Banff Classification for renal allografts

    Get PDF
    The XVIth Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from September 19 to 23, 2022, as a joint meeting with the Canadian Society of Transplantation. In addition to a key focus on the impact of microvascular inflammation and biopsy-based transcript analysis on the Banff Classification, further sessions were devoted to other aspects of kidney transplant pathology, in particular T cell–mediated rejection, activity and chronicity indices, digital pathology, xenotransplantation, clinical trials, and surrogate endpoints. Although the output of these sessions has not led to any changes in the classification, the key role of Banff Working Groups in phrasing unanswered questions, and coordinating and disseminating results of investigations addressing these unanswered questions was emphasized. This paper summarizes the key Banff Meeting 2022 sessions not covered in the Banff Kidney Meeting 2022 Report paper and also provides an update on other Banff Working Group activities relevant to kidney allografts.</p

    Banff 2022 liver group meeting report: monitoring long term allograft health.

    Get PDF
    The Banff Working Group on Liver Allograft Pathology met in September 2022. Participantsincluded hepatologists, surgeons, pathologists, immunologists and histocompatibility specialists.Presentations and discussions focused on the evaluation of long-term allograft health, including noninvasive and tissue monitoring, immunosuppression optimisation and long-term structural changes.Potential revision of the rejection classification scheme to better accommodate and communicate lateT cell-mediated rejection patterns and related structural changes, such as nodular regenerativehyperplasia, were discussed. Improved stratification of long-term maintenance immunosuppression tomatch the heterogeneity of patient settings will be central to improving long-term patient survival.Such personalised therapeutics are in turn contingent on better understanding and monitoring ofallograft status within a rational decision-making approach, likely to be facilitated in implementationwith emerging decision support tools. Proposed revisions to rejection classification emerging fromthe meeting include incorporation of interface hepatitis and fibrosis staging. These will be opened toonline testing, modified accordingly and subject to consensus discussion leading up to the next Banffconference

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Background: Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. // Methods: We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. // Findings: We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middle-income countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in low-income countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. // Interpretation: Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between low-income, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030
    corecore