23 research outputs found

    The P450 CYP6Z1 confers carbamate/pyrethroid cross-resistance in a major African malaria vector beside a novel carbamate-insensitive N485I acetylcholinesterase-1 mutation

    Get PDF
    Carbamates are increasingly used for vector control notably in areas with pyrethroid resistance. However, a cross-resistance between these insecticides in major malaria vectors such as Anopheles funestus could severely limit available resistance management options. Unfortunately, the molecular basis of such cross-resistance remains uncharacterized in An. funestus, preventing effective resistance management. Here, using a genome-wide transcription profiling, we revealed that metabolic resistance through up-regulation of cytochrome P450 genes is driving carbamate resistance. The P450s CYP6P9a, CYP6P9b and CYP6Z1 were the most up-regulated detoxification genes in the multiple resistant mosquitoes. However, in silico docking simulations predicted CYP6Z1 to metabolise both pyrethroids and carbamates, whereas CYP6P9a and CYP6P9b were predicted to metabolise only the pyrethroids. Using recombinant enzyme metabolism and inhibition assays we demonstrated that CYP6Z1 metabolizes bendiocarb and pyrethroids, whereas CYP6P9a and CYP6P9b metabolise only the pyrethroids. Other up-regulated gene families in resistant mosquitoes included several cuticular protein genes suggesting a possible reduced penetration resistance mechanism. Investigation of the target-site resistance in acetylcholinesterase 1 (ace-1) gene detected and established the association between the new N485I mutation and bendiocarb resistance (Odds ratio 7.3; P<0.0001). The detection of multiple haplotypes in single mosquitoes after cloning suggested the duplication of ace-1. A TaqMan genotyping of the N485I in nine countries revealed that the mutation is located only in Southern Africa with frequency of 10-15% suggesting its recent occurrence. These findings will help in monitoring the spread and evolution of carbamate resistance and improve the design of effective resistance management strategies to control this malaria vector

    Multiple insecticide resistance in the major malaria vector Anopheles funestus in southern Ghana: implications for malaria control

    Get PDF
    Background Understanding the dynamics of insecticide resistance in African malaria vectors is crucial for successful implementation of resistance management strategies in the continent. This study reports a high and multiple insecticide resistance in Anopheles funestus from southern Ghana which could compromise the Malaria Operational Plan in this country, if not tackled. Adult Anopheles mosquitoes were collected in Obuasi and Adawukwa, in southern Ghana. Plasmodium infection rates, susceptibility to the main insecticides used in public health and the molecular basis of insecticide resistance were established. Results An. funestus (sensu stricto) (s.s.) was the predominant mosquito species found resting inside the houses in Obuasi, while at Adawukwa it was found together with An. coluzzii. Parasite rates were high in An. funestus (s.s.) populations from both localities, with Plasmodium infection rates greater than 12.5 %. Both, An. funestus (s.s.) and An. coluzzii, from the two sites exhibited high resistance to the insecticide from various classes including the pyrethroids, carbamates and DDT, but remained fully susceptible to the organophosphates. A preliminary characterization of the underlying molecular mechanisms of resistance in An. funestus (s.s.) populations from both sites revealed that CYP6P9a, CYP6P9b, CYP6M7 and GSTe2 genes are upregulated, markedly higher in Obuasi (between 3.35 and 1.83 times) than in Adawukwa population. The frequency of L119F-GSTe2 and A296S-RDL resistance markers were also higher in Obuasi (42.5 and 68.95 % higher), compared with An. funestus (s.s.) populations from Adawukwa. These findings suggest that the similar resistance pattern observed in both An. funestus (s.s.) populations are driven by different mechanisms. Conclusions Resistance to multiple insecticides in public health use is present in malaria vectors from Ghana with major resistance genes already operating in the field. This should be taken into consideration in the design of resistance management strategies to avoid operational failure

    The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus

    Get PDF
    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus

    Multiple Insecticide Resistance in the Malaria Vector Anopheles funestus from Northern Cameroon Is Mediated by Metabolic Resistance Alongside Potential Target Site Insensitivity Mutations

    Get PDF
    Background Despite the recent progress in establishing the patterns of insecticide resistance in the major malaria vector Anopheles funestus, Central African populations of this species remain largely uncharacterised. To bridge this important gap and facilitate the implementation of suitable control strategies against this vector, we characterised the resistance patterns of An. funestus population from northern Cameroon. Methods and Findings Collection of indoor-resting female mosquitoes in Gounougou (northern Cameroon) in 2012 and 2015 revealed a predominance of An. funestus during dry season. WHO bioassays performed using F1 An. funestus revealed that the population was multiple resistant to several insecticide classes including pyrethroids (permethrin, deltamethrin, lambda-cyhalothrin and etofenprox), carbamates (bendiocarb) and organochlorines (DDT and dieldrin). However, a full susceptibility was observed against the organophosphate malathion. Bioassays performed with 2015 collection revealed that resistance against pyrethroids and DDT is increasing. PBO synergist assays revealed a significant recovery of susceptibility for all pyrethroids but less for DDT. Analysis of the polymorphism of a portion of the voltage-gated sodium channel gene (VGSC) revealed the absence of the L1014F/S kdr mutation but identified 3 novel amino acid changes I877L, V881L and A1007S. However, no association was established between VGSC polymorphism and pyrethroid/DDT resistance. The DDT resistant 119F-GSTe2 allele (52%) and the dieldrin resistant 296S-RDL allele (45%) were detected in Gounougou. Temporal analysis between 2006, 2012 and 2015 collections revealed that the 119F-GSTe2 allele was relatively stable whereas a significant decrease is observed for 296S-RDL allele. Conclusion This multiple resistance coupled with the temporal increased in resistance intensity highlights the need to take urgent measures to prolong the efficacy of current insecticide-based interventions against An. funestus in this African region

    Polymorphism Analysis of pfmdr1 and pfcrt from Plasmodium falciparum Isolates in Northwestern Nigeria Revealed the Major Markers Associated with Antimalarial Resistance

    Get PDF
    Suspicion of failure in the effectiveness of artemisinin-based combination therapies (currently the first-line treatment of malaria, worldwide) is leading to the unofficial use of alternative antimalarials, including chloroquine and sulfadoxine/pyrimethamine, across northern Nigeria. To facilitate evidence-based resistance management, antimalarial resistance mutations were investigated in Plasmodium falciparum multidrug resistance-1 (pfmdr1) and chloroquine resistance transporter (pfcrt), in isolates from Kano, northwestern Nigeria. Out of the 88 samples genotyped for pfmdr1N86Y mutation using PCR/restriction fragment length polymorphism, one sample contained the 86Y mutation (86Yfrequency = 1.14%). The analysis of 610 bp fragments of pfmdr1 from 16 isolates revealed two polymorphic sites and low haplotype diversity (Hd = 0.492), with only 86 Y mutations in one isolate, and 184 F replacements in five isolates (184Ffrequency = 31.25%). The analysis of 267 bp fragments of pfcrt isolates revealed high polymorphism (Hd = 0.719), with six haplotypes and seven non-synonymous polymorphic sites. Eleven isolates (61.11%) were chloroquine-resistant, CQR (C72V73I74E75T76 haplotype), two of which had an additional mutation, D57E. An additional sequence was CQR, but of the C72V73M74E75T76 haplotype, while the rest of the sequences (33.33%) were chloroquine susceptible (C72V73M74N75K76 haplotype). The findings of these well characterized resistance markers should be considered when designing resistance management strategies in the northwestern Nigeria

    The duplicated P450s CYP6P9a/b drive carbamates and pyrethroids cross-resistance in the major African malaria vector Anopheles funestus

    Get PDF
    Cross-resistance to insecticides in multiple resistant malaria vectors is hampering resistance management. Understanding its underlying molecular basis is critical to implementation of suitable insecticide-based interventions. Here, we established that the tandemly duplicated cytochrome P450s, CYP6P9a/b are driving carbamate and pyrethroid cross-resistance in Southern African populations of the major malaria vector Anopheles funestus. Transcriptome sequencing revealed that cytochrome P450s are the most over-expressed genes in bendiocarb and permethrin-resistant An. funestus. The CYP6P9a and CYP6P9b genes are overexpressed in resistant An. funestus from Southern Africa (Malawi) versus susceptible An. funestus (Fold change (FC) is 53.4 and 17 respectively), while the CYP6P4a and CYP6P4b genes are overexpressed in resistant An. funestus in Ghana, West Africa, (FC is 41.1 and 17.2 respectively). Other up-regulated genes in resistant An. funestus include several additional cytochrome P450s (e.g. CYP9J5, CYP6P2, CYP6P5), glutathione-S transferases, ATP-binding cassette transporters, digestive enzymes, microRNA and transcription factors (FC&lt;7). Targeted enrichment sequencing strongly linked a known major pyrethroid resistance locus (rp1) to carbamate resistance centering around CYP6P9a/b. In bendiocarb resistant An. funestus, this locus exhibits a reduced nucleotide diversity, significant p-values when comparing allele frequencies, and the most non-synonymous substitutions. Recombinant enzyme metabolism assays showed that both CYP6P9a/b metabolize carbamates. Transgenic expression of CYP6P9a/b in Drosophila melanogaster revealed that flies expressing both genes were significantly more resistant to carbamates than controls. Furthermore, a strong correlation was observed between carbamate resistance and CYP6P9a genotypes with homozygote resistant An. funestus (CYP6P9a and the 6.5kb enhancer structural variant) exhibiting a greater ability to withstand bendiocarb/propoxur exposure than homozygote CYP6P9a_susceptible (e.g Odds ratio = 20.8, P&lt;0.0001 for bendiocarb) and heterozygotes (OR = 9.7, P&lt;0.0001). Double homozygote resistant genotype (RR/RR) were even more able to survive than any other genotype combination showing an additive effect. This study highlights the risk that pyrethroid resistance escalation poses to the efficacy of other classes of insecticides. Available metabolic resistance DNA-based diagnostic assays should be used by control programs to monitor cross-resistance between insecticides before implementing new interventions

    High pyrethroid/DDT resistance in major malaria vector Anopheles coluzzii from Niger-Delta of Nigeria is probably driven by metabolic resistance mechanisms

    Get PDF
    Entomological surveillance of local malaria vector populations is an important component of vector control and resistance management. In this study, the resistance profile and its possible mechanisms was characterised in a field population of the major malaria vector Anopheles coluzzii from Port Harcourt, the capital of Rivers state, in the Niger-Delta Region of Nigeria. Larvae collected in Port-Harcourt, were reared to adulthood and used for WHO bioassays. The population exhibited high resistance to permethrin, deltamethrin and DDT with mortalities of 6.7% ± 2.4, 37.5% ± 3.2 and 6.3% ± 4.1, respectively, but were fully susceptible to bendiocarb and malathion. Synergist bioassays with piperonylbutoxide (PBO) partially recovered susceptibility, with mortalities increasing to 53% ± 4, indicating probable role of CYP450s in permethrin resistance (χ2 = 29.48, P < 0.0001). Transcriptional profiling revealed five major resistance-associated genes overexpressed in the field samples compared to the fully susceptible laboratory colony, Ngoussou. Highest fold change (FC) was observed with GSTe2 (FC = 3.3 in permethrin exposed and 6.2 in unexposed) and CYP6Z3 (FC = 1.4 in exposed and 4.6 in unexposed). TaqMan genotyping of 32 F0 females detected the 1014F and 1575Y knockdown resistance (kdr) mutations with frequencies of 0.84 and 0.1, respectively, while 1014S mutation was not detected. Sequencing of a fragment of the voltage-gated sodium channel, spanning exon 20 from 13 deltamethrin-resistant and 9 susceptible females revealed only 2 distinct haplotypes with a low haplotype diversity of 0.33. The findings of high pyrethroid resistance but with a significant degree of recovery after PBO synergist assay suggests the need to move to PBO-based nets. This could be complemented with carbamate- or organophosphate-based indoor residual spraying in this area

    Multi‐omics analysis identifies a CYP9K1 haplotype conferring pyrethroid resistance in the malaria vector Anopheles funestus in East Africa

    Get PDF
    Metabolic resistance to pyrethroids is a menace to the continued effectiveness of malaria vector controls. Its molecular basis is complex and varies geographically across Africa. Here, we used a multi-omics approach, followed-up with functional validation to show that a directionally selected haplotype of a cytochrome P450, CYP9K1 is a major driver of resistance in Anopheles funestus. A PoolSeq GWAS using mosquitoes alive and dead after permethrin exposure, from Malawi and Cameroon, detected candidate genomic regions, but lacked consistency across replicates. Targeted sequencing of candidate resistance genes detected several SNPs associated with known pyrethroid resistance QTLs. The most significant SNPs were in the cytochrome P450 CYP304B1 (Cameroon), CYP315A1 (Uganda) and the ABC transporter gene ABCG4 (Malawi). However, when comparing field resistant mosquitoes to laboratory susceptible, the pyrethroid resistance locus rp1 and SNPs around the ABC transporter ABCG4 were consistently significant, except for Uganda where SNPs in the P450 CYP9K1 was markedly significant. In vitro heterologous metabolism assays with recombinant CYP9K1 revealed that it metabolises type II pyrethroid (deltamethrin; 64% depletion) but not type I (permethrin; 0%), while moderately metabolising DDT (17%). CYP9K1 exhibited reduced genetic diversity in Uganda underlying an extensive selective sweep. Furthermore, a glycine to alanine (G454A) amino acid change in CYP9K1 was fixed in Ugandan mosquitoes but not in other An. funestus populations. This study sheds further light on the evolution of metabolic resistance in a major malaria vector by implicating more genes and variants that can be used to design field-applicable markers to better track resistance Africa-wide

    Genome-Wide Transcriptional Analysis and Functional Validation Linked a Cluster of Epsilon Glutathione S-Transferases with Insecticide Resistance in the Major Malaria Vector Anopheles funestus across Africa

    Get PDF
    Resistance is threatening the effectiveness of insecticide-based interventions in use for malaria control. Pinpointing genes associated with resistance is crucial for evidence-based resistance management targeting the major malaria vectors. Here, a combination of RNA-seq based genome-wide transcriptional analysis and RNA-silencing in vivo functional validation were used to identify key insecticide resistance genes associated with DDT and DDT/permethrin cross-resistance across Africa. A cluster of glutathione-S-transferase from epsilon group were found to be overexpressed in resistant populations of Anopheles funestus across Africa including GSTe1 [Cameroon (fold change, FC: 2.54), Ghana (4.20), Malawi (2.51)], GSTe2 [Cameroon (4.47), Ghana (7.52), Malawi (2.13)], GSTe3 [Cameroon (2.49), Uganda (2.60)], GSTe4 in Ghana (3.47), GSTe5 [Ghana (2.94), Malawi (2.26)], GSTe6 [Cameroun (3.0), Ghana (3.11), Malawi (3.07), Uganda (3.78)] and GSTe7 (2.39) in Ghana. Validation of GSTe genes expression profiles by qPCR confirmed that the genes are differentially expressed across Africa with a greater overexpression in DDT-resistant mosquitoes. RNAi-based knock-down analyses supported that five GSTe genes are playing a major role in resistance to pyrethroids (permethrin and deltamethrin) and DDT in An. funestus, with a significant recovery of susceptibility observed when GSTe2, 3, 4, 5 and GSTe6 were silenced. These findings established that GSTe3, 4, 5 and 6 contribute to DDT resistance and should be further characterized to identify their specific genetic variants, to help design DNA-based diagnostic assays, as previously done for the 119F-GSTe2 mutation. This study highlights the role of GSTes in the development of resistance to insecticides in malaria vectors and calls for actions to mitigate this resistance

    Molecular drivers of insecticide resistance in the Sahelo-Sudanian populations of a major malaria vector Anopheles coluzzii

    Get PDF
    Background: Information on common markers of metabolic resistance in malaria vectors from countries sharing similar eco-climatic characteristics can facilitate coordination of malaria control. Here, we characterized populations of the major malaria vector Anopheles coluzzii from Sahel region, spanning four sub-Saharan African countries: Nigeria, Niger, Chad and Cameroon. Results: Genome-wide transcriptional analysis identified major genes previously implicated in pyrethroid and/or cross-resistance to other insecticides, overexpressed across the Sahel, including CYP450s, glutathione S-transferases, carboxylesterases and cuticular proteins. Several, well-known markers of insecticide resistance were found in high frequencies—including in the voltage-gated sodium channel (V402L, I940T, L995F, I1527T and N1570Y), the acetylcholinesterase-1 gene (G280S) and the CYP4J5-L43F (which is fixed). High frequencies of the epidemiologically important chromosomal inversion polymorphisms, 2La, 2Rb and 2Rc, were observed (~80% for 2Rb and 2Rc). The 2La alternative arrangement is fixed across the Sahel. Low frequencies of these inversions (C), between Forkhead box L1 and c-EST putative binding sites, were responsible for the high overexpression of GSTe2 in the resistant mosquitoes. Transgenic flies expressing CYP6Z2 exhibited marginal resistance towards 3-phenoxybenzylalcohol (a primary product of pyrethroid hydrolysis by carboxylesterases) and a type II pyrethroid, α-cypermethrin. However, significantly higher mortalities were observed in CYP6Z2 transgenic flies compared with controls, on exposure to the neonicotinoid, clothianidin. This suggests a possible bioactivation of clothianidin into a toxic intermediate, which may make it an ideal insecticide against populations of An. coluzzii overexpressing this P450. Conclusions: These findings will facilitate regional collaborations within the Sahel region and refine implementation strategies through re-focusing interventions, improving evidence-based, cross-border policies towards local and regional malaria pre-elimination
    corecore