4,469 research outputs found

    Uniqueness property for quasiharmonic functions

    Full text link
    In this paper we consider class of continuous functions, called quasiaharmonic functions, admitting best approximations by harmonic polynomials. In this class we prove a uniqueness theorem by analogy with the analytic functions

    Nonlinear self-adjointness and conservation laws

    Full text link
    The general concept of nonlinear self-adjointness of differential equations is introduced. It includes the linear self-adjointness as a particular case. Moreover, it embraces the strict self-adjointness and quasi self-adjointness introduced earlier by the author. It is shown that the equations possessing the nonlinear self-adjointness can be written equivalently in a strictly self-adjoint form by using appropriate multipliers. All linear equations possess the property of nonlinear self-adjointness, and hence can be rewritten in a nonlinear strictly self-adjoint. For example, the heat equation ut−Δu=0u_t - \Delta u = 0 becomes strictly self-adjoint after multiplying by u−1.u^{-1}. Conservation laws associated with symmetries can be constructed for all differential equations and systems having the property of nonlinear self-adjointness

    Classification of conservation laws of compressible isentropic fluid flow in n>1 spatial dimensions

    Full text link
    For the Euler equations governing compressible isentropic fluid flow with a barotropic equation of state (where pressure is a function only of the density), local conservation laws in n>1n>1 spatial dimensions are fully classified in two primary cases of physical and analytical interest: (1) kinematic conserved densities that depend only on the fluid density and velocity, in addition to the time and space coordinates; (2) vorticity conserved densities that have an essential dependence on the curl of the fluid velocity. A main result of the classification in the kinematic case is that the only equation of state found to be distinguished by admitting extra nn-dimensional conserved integrals, apart from mass, momentum, energy, angular momentum and Galilean momentum (which are admitted for all equations of state), is the well-known polytropic equation of state with dimension-dependent exponent γ=1+2/n\gamma=1+2/n. In the vorticity case, no distinguished equations of state are found to arise, and here the main result of the classification is that, in all even dimensions n≥2n\geq 2, a generalized version of Kelvin's two-dimensional circulation theorem is obtained for a general equation of state.Comment: 24 pages; published version with misprints correcte

    Ordinary differential equations which linearize on differentiation

    Full text link
    In this short note we discuss ordinary differential equations which linearize upon one (or more) differentiations. Although the subject is fairly elementary, equations of this type arise naturally in the context of integrable systems.Comment: 9 page

    Public procurement’s legal regulation through the medium of competitive procurement in the Republic of Kazakhstan

    Get PDF
    The aim of the article is to study the problems of legal regulation of government procurement in Kazakhstan from the point of view of the latest domestic and foreign researches. The methodological basis of the study was the legislative acts, statutory documents on the theme of work, fundamental theoretical works, results of practical studies of prominent domestic and foreign scientists. According to the results, it is important to note that the closed competitive tender is characterized by the fact that the offer to participate in it, is drawn to a certain circle of persons at the discretion of the competition’s organizer. The authors of the study came to the main conclusion that the law on state procurement is being improved, the Law "On State Procurement" is being updated, and orders are issued on topical issues, namely on combating corruption.peer-reviewe

    A Group Theoretical Identification of Integrable Equations in the Li\'enard Type Equation x¨+f(x)x˙+g(x)=0\ddot{x}+f(x)\dot{x}+g(x) = 0 : Part II: Equations having Maximal Lie Point Symmetries

    Full text link
    In this second of the set of two papers on Lie symmetry analysis of a class of Li\'enard type equation of the form x¨+f(x)x˙+g(x)=0\ddot {x} + f(x)\dot {x} + g(x)= 0, where over dot denotes differentiation with respect to time and f(x)f(x) and g(x)g(x) are smooth functions of their variables, we isolate the equations which possess maximal Lie point symmetries. It is well known that any second order nonlinear ordinary differential equation which admits eight parameter Lie point symmetries is linearizable to free particle equation through point transformation. As a consequence all the identified equations turn out to be linearizable. We also show that one can get maximal Lie point symmetries for the above Li\'enard equation only when fxx=0f_{xx} =0 (subscript denotes differentiation). In addition, we discuss the linearising transformations and solutions for all the nonlinear equations identified in this paper.Comment: Accepted for publication in Journal of Mathematical Physic

    A Necessary Condition for existence of Lie Symmetries in Quasihomogeneous Systems of Ordinary Differential Equations

    Full text link
    Lie symmetries for ordinary differential equations are studied. In systems of ordinary differential equations, there do not always exist non-trivial Lie symmetries around equilibrium points. We present a necessary condition for existence of Lie symmetries analytic in the neighbourhood of an equilibrium point. In addition, this result can be applied to a necessary condition for existence of a Lie symmetry in quasihomogeneous systems of ordinary differential equations. With the help of our main theorem, it is proved that several systems do not possess any analytic Lie symmetries.Comment: 15 pages, no figures, AMSLaTe

    On the hierarchy of partially invariant submodels of differential equations

    Full text link
    It is noticed, that partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PIS of the higher rank. This introduce a hierarchic structure in the set of all PISs of a given system of differential equations. By using this structure one can significantly decrease an amount of calculations required in enumeration of all PISs for a given system of partially differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. In this framework the complete classification of regular partially invariant solutions of ideal MHD equations is given
    • …
    corecore