4,451 research outputs found

    Group classification of the Sachs equations for a radiating axisymmetric, non-rotating, vacuum space-time

    Get PDF
    We carry out a Lie group analysis of the Sachs equations for a time-dependent axisymmetric non-rotating space-time in which the Ricci tensor vanishes. These equations, which are the first two members of the set of Newman-Penrose equations, define the characteristic initial-value problem for the space-time. We find a particular form for the initial data such that these equations admit a Lie symmetry, and so defines a geometrically special class of such spacetimes. These should additionally be of particular physical interest because of this special geometric feature.Comment: 18 Pages. Submitted to Classical and Quantum Gravit

    Group Analysis of the Novikov Equation

    Full text link
    We find the Lie point symmetries of the Novikov equation and demonstrate that it is strictly self-adjoint. Using the self-adjointness and the recent technique for constructing conserved vectors associated with symmetries of differential equations, we find the conservation law corresponding to the dilations symmetry and show that other symmetries do not provide nontrivial conservation laws. Then we investigat the invariant solutions

    Reconstruction of Structured Quadratic Pencils from Eigenvalues on Ellipses and Parabolas

    Get PDF
    In the present paper we study the reconstruction of a structured quadratic pencil from eigenvalues distributed on ellipses or parabolas. A quadratic pencil is a square matrix polynomial QP(Ξ») = M Ξ»2+CΞ» +K, where M, C, and K are real square matrices. The approach developed in the paper is based on the theory of orthogonal polynomials on the real line. The results can be applied to more general distribution of eigenvalues. The problem with added single eigenvector is also briefly discussed. As an illustration of the reconstruction method, the eigenvalue problem on linearized stability of certain class of stationary exact solution of the Navier-Stokes equations describing atmospheric flows on a spherical surface is reformulated as a simple mass-spring system by means of this method

    Heavy tails and upper-tail inequality: The case of Russia

    Get PDF
    Β© 2017 The Author(s)Motivated, in part, by the recent surge of interest in robust inequality measurement, cross-country inequality comparisons, applications of heavy-tailed distributions and the study of global and upper-tail inequality, this paper focuses on robust analysis of heavy-tailedness properties and inequality in the upper tails of income distribution in Russia, as measured, mainly, by its tail indices. The study is based on recently developed approaches to robust inference on the degree of heavy-tailedness and their implications for the analysis of upper-tail inequality discussed in the paper. Among other results, the paper provides robust estimates of heavy-tailedness parameters and tail indices for Russian income distribution and their comparisons with the benchmark values in developed economies reported in the previous literature. The estimates point out to important similarity between heavy-tailedness properties of income distribution and their implications for the analysis of upper-tail income inequality in Russia and those in developed markets

    A symmetry classification for a class of (2+1)-nonlinear wave equation

    Full text link
    In this paper, a symmetry classification of a (2+1)(2+1)-nonlinear wave equation uttβˆ’f(u)(uxx+uyy)=0u_{tt}-f(u)(u_{xx}+u_{yy})=0 where f(u)f(u) is a smooth function on uu, using Lie group method, is given. The basic infinitesimal method for calculating symmetry groups is presented, and used to determine the general symmetry group of this (2+1)(2+1)-nonlinear wave equation

    Π˜Π·Π±Ρ‹Ρ‚ΠΎΡ‡Π½Π°Ρ созданная Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΊΠ°ΠΊ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠ° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΠΈ ΠΈ Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ посрСдством показатСля TEVA

    Get PDF
    The paper explores the excess value created (EVC) metric, which is an aggregated measure of the financial performance of a company over a multi-period measurement interval. The relevance of the study is due to the demand for practical solutions in the field of financial performance monitoring and incentive compensation, which makes it possible to achieve congruence between the interests of shareholders and the decisions of managers. The aim of the study is to build and justify a periodic financial measure that takes into account not only the current result but also the long-term consequences of management decisions. The scientific novelty of the study lies in the determination of the EVC metric via the TEVA indicator and providing the rationale for the new design of the performance measure. The result of the study is the derivation of formulas for calculating the EVC measure on multi-period and one-period intervals, which are free from restrictions on changes in the capital structure and the cost of capital, allow for a time-varying systematic risk of operating activities and possess the advantage of computational simplicity important for practical applications. The study concludes that the measurement of value created using the EVC indicator determined via TEVA makes it possible to achieve close conformity of the metric constructed to the real-world conditions with the unification of calculations in its retrospective and forecast components based on data available from historical and Pro Forma financial statements and information from the capital market.Автор исслСдуСт ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠΉ созданной цСнности (EVC), ΡΠ²Π»ΡΡŽΡ‰Π΅ΠΉΡΡ Π°Π³Ρ€Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ€ΠΎΠΉ финансовой Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΠΈ Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ Π½Π° ΠΌΠ½ΠΎΠ³ΠΎΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ измСрСния. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования обусловлСна Π²ΠΎΡΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒΡŽ практичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π² сфСрС контроля Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΠΈ ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ стимулирования, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΡ… Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ согласованности ΠΌΠ΅ΠΆΠ΄Ρƒ интСрСсами Π°ΠΊΡ†ΠΈΠΎΠ½Π΅Ρ€ΠΎΠ² ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡΠΌΠΈ ΠΌΠ΅Π½Π΅Π΄ΠΆΠ΅Ρ€ΠΎΠ². ЦСлью исслСдования являСтся построСниС ΠΈ обоснованиС пСриодичСского финансового измСритСля, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Π΅ΠΊΡƒΡ‰ΠΈΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚, Π½ΠΎ ΠΈ долгосрочныС послСдствия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΌΠ΅Π½Π΅Π΄ΠΆΠΌΠ΅Π½Ρ‚Π°. Научная Π½ΠΎΠ²ΠΈΠ·Π½Π° исслСдования состоит Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ показатСля EVC посрСдством показатСля TEVA ΠΈ обосновании Π½ΠΎΠ²ΠΎΠΉ конструкции измСритСля Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ исслСдования являСтся Π²Ρ‹Π²ΠΎΠ΄ Ρ„ΠΎΡ€ΠΌΡƒΠ» для расчСта показатСля EVC Π½Π° ΠΌΠ½ΠΎΠ³ΠΎΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π½ΠΎΠΌ ΠΈ ΠΎΠ΄Π½ΠΎΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°Ρ…, свободных ΠΎΡ‚ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ структуры ΠΈ стоимости ΠΊΠ°ΠΏΠΈΡ‚Π°Π»Π°, Π΄ΠΎΠΏΡƒΡΠΊΠ°ΡŽΡ‰ΠΈΡ… ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰ΠΈΠΉΡΡ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ систСматичСский риск ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… прСимущСство Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ простоты, Π²Π°ΠΆΠ½ΠΎΠ΅ для практичСских ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΉ. Π‘Π΄Π΅Π»Π°Π½ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ созданной цСнности с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ показатСля EVΠ‘, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ посрСдством TEVA, позволяСт Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ Π±Π»ΠΈΠ·ΠΊΠΎΠ³ΠΎ соотвСтствия построСнной мСтричСской конструкции условиям Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΈΡ€Π° с ΡƒΠ½ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ расчСтов Π² Π΅Π΅ рСтроспСктивной ΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π½ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Π½Π° основС Π΄Π°Π½Π½Ρ‹Ρ…, доступных ΠΈΠ· историчСской ΠΈ Pro Forma финансовой отчСтности, ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Ρ€Ρ‹Π½ΠΊΠ° ΠΊΠ°ΠΏΠΈΡ‚Π°Π»Π°
    • …
    corecore