4,451 research outputs found
Group classification of the Sachs equations for a radiating axisymmetric, non-rotating, vacuum space-time
We carry out a Lie group analysis of the Sachs equations for a time-dependent
axisymmetric non-rotating space-time in which the Ricci tensor vanishes. These
equations, which are the first two members of the set of Newman-Penrose
equations, define the characteristic initial-value problem for the space-time.
We find a particular form for the initial data such that these equations admit
a Lie symmetry, and so defines a geometrically special class of such
spacetimes. These should additionally be of particular physical interest
because of this special geometric feature.Comment: 18 Pages. Submitted to Classical and Quantum Gravit
Group Analysis of the Novikov Equation
We find the Lie point symmetries of the Novikov equation and demonstrate that
it is strictly self-adjoint. Using the self-adjointness and the recent
technique for constructing conserved vectors associated with symmetries of
differential equations, we find the conservation law corresponding to the
dilations symmetry and show that other symmetries do not provide nontrivial
conservation laws. Then we investigat the invariant solutions
Reconstruction of Structured Quadratic Pencils from Eigenvalues on Ellipses and Parabolas
In the present paper we study the reconstruction of a structured quadratic pencil from eigenvalues distributed on ellipses or parabolas. A quadratic pencil is a square matrix polynomial
QP(Ξ») = M Ξ»2+CΞ» +K,
where M, C, and K are real square matrices. The approach developed in the paper is based on the theory of orthogonal polynomials on the real line. The results can be applied to more general distribution of eigenvalues. The problem with added single eigenvector is also briefly discussed. As an illustration of the reconstruction method, the eigenvalue problem on linearized stability of certain class of stationary exact solution of the Navier-Stokes equations describing atmospheric flows on a spherical surface is reformulated as a simple mass-spring system by means of this method
Heavy tails and upper-tail inequality: The case of Russia
Β© 2017 The Author(s)Motivated, in part, by the recent surge of interest in robust inequality measurement, cross-country inequality comparisons, applications of heavy-tailed distributions and the study of global and upper-tail inequality, this paper focuses on robust analysis of heavy-tailedness properties and inequality in the upper tails of income distribution in Russia, as measured, mainly, by its tail indices. The study is based on recently developed approaches to robust inference on the degree of heavy-tailedness and their implications for the analysis of upper-tail inequality discussed in the paper. Among other results, the paper provides robust estimates of heavy-tailedness parameters and tail indices for Russian income distribution and their comparisons with the benchmark values in developed economies reported in the previous literature. The estimates point out to important similarity between heavy-tailedness properties of income distribution and their implications for the analysis of upper-tail income inequality in Russia and those in developed markets
A symmetry classification for a class of (2+1)-nonlinear wave equation
In this paper, a symmetry classification of a -nonlinear wave equation
where is a smooth function on , using
Lie group method, is given. The basic infinitesimal method for calculating
symmetry groups is presented, and used to determine the general symmetry group
of this -nonlinear wave equation
ΠΠ·Π±ΡΡΠΎΡΠ½Π°Ρ ΡΠΎΠ·Π΄Π°Π½Π½Π°Ρ ΡΠ΅Π½Π½ΠΎΡΡΡ ΠΊΠ°ΠΊ ΠΌΠ΅ΡΡΠΈΠΊΠ° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈ Π΅Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ TEVA
The paper explores the excess value created (EVC) metric, which is an aggregated measure of the financial performance of a company over a multi-period measurement interval. The relevance of the study is due to the demand for practical solutions in the field of financial performance monitoring and incentive compensation, which makes it possible to achieve congruence between the interests of shareholders and the decisions of managers. The aim of the study is to build and justify a periodic financial measure that takes into account not only the current result but also the long-term consequences of management decisions. The scientific novelty of the study lies in the determination of the EVC metric via the TEVA indicator and providing the rationale for the new design of the performance measure. The result of the study is the derivation of formulas for calculating the EVC measure on multi-period and one-period intervals, which are free from restrictions on changes in the capital structure and the cost of capital, allow for a time-varying systematic risk of operating activities and possess the advantage of computational simplicity important for practical applications. The study concludes that the measurement of value created using the EVC indicator determined via TEVA makes it possible to achieve close conformity of the metric constructed to the real-world conditions with the unification of calculations in its retrospective and forecast components based on data available from historical and Pro Forma financial statements and information from the capital market.ΠΠ²ΡΠΎΡ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΠΈΠ·Π±ΡΡΠΎΡΠ½ΠΎΠΉ ΡΠΎΠ·Π΄Π°Π½Π½ΠΎΠΉ ΡΠ΅Π½Π½ΠΎΡΡΠΈ (EVC), ΡΠ²Π»ΡΡΡΠ΅ΠΉΡΡ Π°Π³ΡΠ΅Π³ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠΉ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈΠ²Π½ΠΎΡΡΠΈ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ Π½Π° ΠΌΠ½ΠΎΠ³ΠΎΠΏΠ΅ΡΠΈΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° Π²ΠΎΡΡΡΠ΅Π±ΠΎΠ²Π°Π½Π½ΠΎΡΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π² ΡΡΠ΅ΡΠ΅ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΈΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΡ
Π΄ΠΎΡΡΠΈΡΡ ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΡΡΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ°ΠΌΠΈ Π°ΠΊΡΠΈΠΎΠ½Π΅ΡΠΎΠ² ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡΠΌΠΈ ΠΌΠ΅Π½Π΅Π΄ΠΆΠ΅ΡΠΎΠ². Π¦Π΅Π»ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»Ρ, ΡΡΠΈΡΡΠ²Π°ΡΡΠ΅Π³ΠΎ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΠΊΡΡΠΈΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ, Π½ΠΎ ΠΈ Π΄ΠΎΠ»Π³ΠΎΡΡΠΎΡΠ½ΡΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΠ²ΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΌΠ΅Π½Π΅Π΄ΠΆΠΌΠ΅Π½ΡΠ°. ΠΠ°ΡΡΠ½Π°Ρ Π½ΠΎΠ²ΠΈΠ·Π½Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠΎΠΈΡ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ EVC ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ TEVA ΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π½ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈΠ²Π½ΠΎΡΡΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²ΡΠ²ΠΎΠ΄ ΡΠΎΡΠΌΡΠ» Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ EVC Π½Π° ΠΌΠ½ΠΎΠ³ΠΎΠΏΠ΅ΡΠΈΠΎΠ΄Π½ΠΎΠΌ ΠΈ ΠΎΠ΄Π½ΠΎΠΏΠ΅ΡΠΈΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π°Ρ
, ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΡ
ΠΎΡ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠΉ Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΡΡΠΊΡΡΡΡ ΠΈ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΠΊΠ°ΠΏΠΈΡΠ°Π»Π°, Π΄ΠΎΠΏΡΡΠΊΠ°ΡΡΠΈΡ
ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΠΉΡΡ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΈΡΠΊ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΈΠΌΠ΅ΡΡΠΈΡ
ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΡΡΠΎΡΡ, Π²Π°ΠΆΠ½ΠΎΠ΅ Π΄Π»Ρ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΉ. Π‘Π΄Π΅Π»Π°Π½ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ·Π΄Π°Π½Π½ΠΎΠΉ ΡΠ΅Π½Π½ΠΎΡΡΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ EVΠ‘, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ TEVA, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π΄ΠΎΡΡΠΈΡΡ Π±Π»ΠΈΠ·ΠΊΠΎΠ³ΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΡΠ° Ρ ΡΠ½ΠΈΡΠΈΠΊΠ°ΡΠΈΠ΅ΠΉ ΡΠ°ΡΡΠ΅ΡΠΎΠ² Π² Π΅Π΅ ΡΠ΅ΡΡΠΎΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·Π½ΠΎΠΉ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ
Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π΄Π°Π½Π½ΡΡ
, Π΄ΠΎΡΡΡΠΏΠ½ΡΡ
ΠΈΠ· ΠΈΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ Pro Forma ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠΉ ΠΎΡΡΠ΅ΡΠ½ΠΎΡΡΠΈ, ΠΈ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΡΡΠ½ΠΊΠ° ΠΊΠ°ΠΏΠΈΡΠ°Π»Π°
- β¦