4 research outputs found

    Evaluation of super-disintegrant potential of acid-modified starch derived from Borassus aethiopum (Aracaceae) shoot in paracetamol tablet formulations

    Get PDF
    Purpose: To evaluate the super-disintegrant potentials of acid modified Borassus aethiopum starch (AMS) in comparison with native starch (NS) and commercial disintegrant sodium starch glycolate (SSG). Methods: Compatibility of AMS with paracetamol powder was evaluated using Fourier transform infrared (FTIR) spectrophotometry. Seven batches of paracetamol granules and tablets were prepared by wet granulation. AMS and NS were employed as disintegrants at concentrations of 2.43, 4.86 and 9.72 %w/w, respectively while 4.86 %w/w SSG was used as standard disintegrant. All the batches of the granules were compressed under the same compression settings. The properties of the granules as well as those of the tablets were assessed. Results: AMS was compatible with paracetamol powder as no noticeable interaction was observed in FTIR study. The paracetamol tablets formulated using AMS as disintegrant demonstrated satisfactory friability, weight uniformity, hardness, and superior disintegration characteristics to the formulations containing NS and SSG as disintegrant. Even at a lower concentration (2.43 %w/w), AMS possessed better disintegrant property than NS and SSG. AMS and NS had dimensionless disintegrant quantity of 1.447 and 0.005, respectively. As expected, increase in AMS concentration showed a decrease in disintegration time. Conclusion: AMS could be a potential low-cost super-disintegrant in formulation of paracetamol tablets. Keywords: Acid modified starch, Borassus aethiopum, Disintegrant, Compatibilit

    Polymeric Biomaterials for Wound Healing Incorporating Plant Extracts and Extracellular Matrix Components

    Get PDF
    Biomaterials are constructed to promote or stimulate the processes of wound healing. Polymeric biomaterials can be used to hydrate the wound and serve as barrier to pathogens with plant extracts, antimicrobial agents and extracellular components incorporated to stimulate the healing process. The biological and physical augmentation provided by extracellular matrix derived implants continues facilitate innovation in biomaterials utilized in management of nonhealing wounds. Tissue-processing methodologies can birth extracellular matrix-based devices with characteristic post-implantation responses ranging from the classic foreign body encapsulation of a permanent implant, to one where the implant is degraded and resorbed, to one where the processed extracellular matrix implant is populated by local fibroblasts and supporting vasculature to produce, a viable and metabolically active tissue. Extracellular matrix components and plant extracts have been shown to possesses pharmacological properties with potential for use in the treatment of skin diseases and wound healing. Antioxidant, anti-inflammatory assays, and wound healing assays have been shown to support the dermatological and wound healing usage of these medicinal plants extracts

    Evaluation of Far‐Field Electrospun Polyvinyl Alcohol/Hyaluronic Acid Nanofibrous Membranes for Skin Tissue Engineering Applications

    No full text
    Abstract Electrospinning has emerged as one of the major technologies for designing and fabricating tissue engineering membranes. The resemblance of the electrospun fiber structure to blood capillaries endowed them with unique capabilities to mimic the native tissue biological characteristics, while the high surface‐to‐volume ratio enables them to exert a controlled release of drug directly to the exposed interstitial tissue. This research attempts to compare the characteristics of different electrospun polyvinyl alcohol/hyaluronic acid (PVA/HA) composite material nanofibrous membranes in order to identify the optimal material‐fabrication combination for wound dressing and skin tissue engineering applications. Far‐field electrospinning equipped with both rotatory and wire collectors is considered for membrane fabrication. PVA with different concentrations and molecular weights of HA are electrospun as nanofibrous membranes considering a voltage of 30 kV on both types of collectors. Comprehensive characterization is conducted including morphological, chemical, thermal, mechanical, and in vitro mucoadhesion analysis. In vitro cell viability/proliferation studies are also carried out and pointed out that the designed membranes are cytocompatible, and able to support keratinocytes proliferation. All these results proved that the fabricated PVA/HA nanofibrous membranes are suitable for wound dressing and skin tissue engineering applications, the optimal material‐fabrication combination is also determined
    corecore