3 research outputs found

    Structural Phase Transition in the Superconducting Pyrochlore Oxide Cd2Re2O7

    Full text link
    We report a structural phase transition found at Ts = 200 K in a pyrochlore oxide Cd2Re2O7 which shows superconductivity at Tc = 1.0 K. X-ray diffractionexperiments indicate that the phase transition is of the second order, from a high-temperature phase with the ideal cubic pyrochlore structure (space group Fd-3m) to a low-temperature phase with another cubic structure (space group F-43m). It is accompanied by a dramatic change in the resistivity and magnetic susceptibility and thus must induce a significant change in the electronic structure of Cd2Re2O7.Comment: 4 pages, 4figures, proceeding for ISSP

    Growth of epitaxially oriented Ag nanoislands on air-oxidized Si(111)-(7x7) surfaces: Influence of short range order on the substrate

    Full text link
    Clean Si(111)-(7{x7) surfaces, followed by air-exposure, have been investigated by reflection high energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). Fourier transforms (FTs) of STM images show the presence of short range (7x7) order on the air-oxidized surface. Comparison with FTs of STM images from a clean Si(111)-(7x7) surface shows that only the 1/7th order spots are present on the air-oxidized surface. The oxide layer is ~ 2-3 nm thick, as revealed by cross-sectional transmission electron microscopy (XTEM). Growth of Ag islands on these air-oxidized Si(111)-(7x7) surfaces has been investigated by in-situ RHEED and STM and ex-situ XTEM and scanning electron microscopy. Ag deposition at room temperature leads to the growth of randomly oriented Ag islands while preferred orientation evolves when Ag is deposited at higher substrate temperatures. For deposition at 550{\deg}C face centered cubic Ag nanoislands grow with a predominant epitaxial orientation [1 -1 0]Ag || [1 -1 0]Si, (111)Ag || (111)Si along with its twin [-1 1 0]Ag || [1 -1 0]Si, (111)Ag || (111)Si, as observed for epitaxial growth of Ag on Si(111) surfaces. The twins are thus rotated by a 180{\deg} rotation of the Ag unit cell about the Si [111] axis. It is intriguing that Ag nanoislands follow an epitaxial relationship with the Si(111) substrate in spite of the presence of a 2-3 nm thick oxide layer between Ag and Si. Apparently the short range order on the oxide surface influences the crystallographic orientation of the Ag nanoislands.Comment: 10 figure

    Rud. Iback Sohn, Barmen (Rhenish Prussia,) largest and oldest piano factory of West Germany

    No full text
    founded in 1794, won first prize in the Vienna Exhibition 187
    corecore