7 research outputs found

    Anomalous Transport in Conical Granular Piles

    Full text link
    Experiments on 2+1-dimensional piles of elongated particles are performed. Comparison with previous experiments in 1+1 dimensions shows that the addition of one extra dimension to the dynamics changes completely the avalanche properties, appearing a characteristic avalanche size. Nevertheless, the time single grains need to cross the whole pile varies smoothly between several orders of magnitude, from a few seconds to more than 100 hours. This behavior is described by a power-law distribution, signaling the existence of scale invariance in the transport process.Comment: Accepted in PR

    Systemic administration of ivabradine, a hyperpolarization‐activated cyclic nucleotide‐gated channel inhibitor, blocks spontaneous absence seizures

    Get PDF
    Objective: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to be involved in the generation of absence seizures (ASs), and there is evidence that cortical and thalamic HCN channel dysfunctions may have a proabsence role. Many HCN channel blockers are available, but their role in ASs has been investigated only by localized brain injection or in in vitro model systems due to their limited brain availability. Here, we investigated the effect on ASs of orally administered ivabradine (an HCN channel blocker approved for the treatment of heart failure in humans) following injection of the P-glycoprotein inhibitor elacridar, which is known to increase penetration into the brain of drug substrates for this efflux transporter. The action of ivabradine was also tested following in vivo microinjection into the cortical initiation network (CIN) of the somatosensory cortex and in the thalamic ventrobasal nucleus (VB) as well as on cortical and thalamocortical neurons in brain slices. Methods: We used electroencephalographic recordings in freely moving Genetic Absence Epilepsy Rats From Strasbourg (GAERSs) to assess the action of oral administration of ivabradine, with and without elacridar, on ASs. Ivabradine was also microinjected into the CIN and VB of GAERSs in vivo and applied to Wistar CIN and GAERS VB slices while recording patch-clamped cortical Layer 5/6 and thalamocortical neurons, respectively. Results: Oral administration of ivabradine markedly and dose-dependently reduced ASs. Ivabradine injection into CIN abolished ASs and elicited small-amplitude 4–7-Hz waves (without spikes), whereas in the VB it was less potent. Moreover, ivabradine applied to GAERS VB and Wistar CIN slices selectively decreased HCN channel-dependent properties of cortical Layer 5/6 pyramidal and thalamocortical neurons, respectively. Significance: These results provide the first demonstration of the antiabsence action of a systemically administered HCN channel blocker, indicating the potential of this class of drugs as a novel therapeutic avenue for ASs

    Recruitment of beta-arrestin2 to the dopamine D2 receptor: insights into anti-psychotic and anti-parkinsonian drug receptor signaling

    No full text
    Drugs acting at dopamine D2-like receptors play a pivotal role in the treatment of both schizophrenia and Parkinson’s disease. Recent studies have demonstrated a role for G-protein independent D2 receptor signaling pathways acting through β-arrestin. In this study we describe the establishment of a Bioluminescence Resonance Energy Transfer (BRET) assay for measuring dopamine induced recruitment of human β-arrestin2 to the human dopamine D2 receptor. Dopamine, as well as the dopamine receptor agonists pramipexole and quinpirole, acted as full agonists in the assay as reflected by their ability to elicit marked concentration dependent increases in the BRET signal signifying β-arrestin2 recruitment to the D2 receptor. As expected from their effect on G-protein coupling and cAMP levels mediated through the D2 receptor RNPA, pergolide, apomorphine, ropinirole, bromocriptine, 3PPP, terguride, aripiprazole, SNPA all acted as partial agonists with decreasing efficacy in the BRET assay. In contrast, a wide selection of typical and atypical anti-psychotics was incapable of stimulating β-arrestin2 recruitment to the D2 receptor. Moreover, we observed that haloperidol, sertindole, olanzapine, clozapine and ziprasidone all fully inhibited the dopamine induced β-arrestin2 recruitment to D2 receptor (short variant) in a concentration dependent manner. We conclude that most anti-psychotics are incapable of stimulating β-arrestin2 recruitment to the dopamine D2 receptor, in accordance with their antagonistic properties at the level of G-protein coupling

    A C-terminal PDZ domain-binding sequence is required for striatal distribution of the dopamine transporter

    Get PDF
    The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling DAT levels in striatal nerve terminals remain poorly understood. DAT contains a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain binding sequence believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different DAT knock-in mice with disrupted PDZ-binding motifs (DAT-AAA and DAT+Ala) are characterized by dramatic loss of DAT expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from DAT-AAA mice, we find markedly reduced DAT surface levels and evidence for enhanced constitutive internalization. In DAT-AAA neurons, but not in wild type neurons, surface levels are rescued in part by expression of a dominant-negative dynamin mutation (K44A). Our findings suggest that PDZ domain interactions are critical for synaptic distribution of DAT in vivo and thereby for proper maintenance of dopamine homeostasis

    Induced Human Regulatory T Cells Express the Glucagon-like Peptide-1 Receptor

    No full text
    The glucagon-like peptide-1 receptor (GLP-1R) plays a key role in metabolism and is an important therapeutic target in diabetes and obesity. Recent studies in experimental animals have shown that certain subsets of T cells express functional GLP-1R, indicating an immune regulatory role of GLP-1. In contrast, less is known about the expression and function of the GLP-1R in human T cells. Here, we provide evidence that activated human T cells express GLP-1R. The expressed GLP-1R was functional, as stimulation with a GLP-1R agonist triggered an increase in intracellular cAMP, which was abrogated by a GLP-1R antagonist. Analysis of CD4+ T cells activated under T helper (Th) 1, Th2, Th17 and regulatory T (Treg) cell differentiation conditions indicated that GLP-1R expression was most pronounced in induced Treg (iTreg) cells. Through multimodal single-cell CITE- and TCR-sequencing, we detected GLP-1R expression in 29–34% of the FoxP3+CD25+CD127- iTreg cells. GLP-1R+ cells showed no difference in their TCR-gene usage nor CDR3 lengths. Finally, we demonstrated the presence of GLP-1R+CD4+ T cells in skin from patients with allergic contact dermatitis. Taken together, the present data demonstrate that T cell activation triggers the expression of functional GLP-1R in human CD4+ T cells. Given the high induction of GLP-1R in human iTreg cells, we hypothesize that GLP-1R+ iTreg cells play a key role in the anti-inflammatory effects ascribed to GLP-1R agonists in humans
    corecore