20 research outputs found

    Do endogenous seasonal cycles of food intake influence foraging behaviour and intake by grazing sheep?

    No full text
    1. Large herbivores living in temperate regions show different degrees of seasonal biological variation, including voluntary food intake (VFI). The decline of VFI in winter has been hypothesized to be an evolved response to lower food availability or quality, which can act as an internal constraint on food intake.\ud \ud 2. The hypotheses were tested that (i) animals that have a greater inherent seasonal variation of VFI, measured indoors under ad libitum conditions, would also have a greater seasonal variation in intake and grazing behaviour under field conditions, and (ii) greater seasonal variation in intake and grazing behaviour under field conditions would be expressed at a higher level of food availability.\ud \ud 3. The intake and grazing behaviour in summer and winter, of three breeds of sheep, were compared at two levels of food availability (at pasture heights of 3.7 and 5.4 cm). The breeds were known to have contrasting degrees of seasonal variation in food intake when fed ad libitum; the VFI of the Shetland (SH) and Scottish Blackface (BF) sheep varies greatly between seasons whereas that of the Dorset Horn (DH) is less seasonally variable.\ud \ud 4. All three breeds consistently increased their rates of biting and duration of grazing activity in the winter, taking many more smaller bites each day than in the summer, and both digestibility and intake were lower in winter than in summer.\ud \ud 5. Contrary to expectation, the DH ewes had the highest seasonal difference of dry matter intake at pasture, whereas the SH breed had the lowest variation of intake between seasons.\ud \ud 6. This experiment provides no evidence that differences between seasons in intake and foraging behaviour in the field vary with the animals' degree of endogenous seasonal variation in VFI. Variation between seasons was consistent at both levels of resource availability, suggesting that it resulted from seasonal changes in food quality (digestibility) rather than biomass availability. It is not easy to extrapolate from laboratory feeding studies, where animals' own physiological constraints apply, to foraging ecology in the field, where constraints imposed by the environment may be more important

    The integrative roles of plant secondary metabolites in natural systems: a synthesis

    No full text
    Plant secondary metabolites (PSM) such as terpenes and phenolic compounds are known to have numerous ecological roles, notably in defence against herbivores, pathogens and abiotic stresses and in interactions with competitors and mutualists. This book reviews recent developments in the field to provide a synthesis of the function, ecology and evolution of PSM, revealing our increased awareness of their integrative role in connecting natural systems. It emphasises the multiple roles of secondary metabolites in mediating the interactions between organisms and their environment at a range of scales of ecological organisation, demonstrating how genes encoding for PSM biosynthetic enzymes can have effects from the cellular scale within individual plants all the way to global environmental processes. A range of recent methodological advances, including molecular, transgenic and metabolomic techniques, are illustrated and promising directions for future studies are identified, making this a valuable reference for researchers and graduate students in the field

    The ecology of plant secondary metabolites : from genes to global processes

    No full text
    Plant secondary metabolites (PSM) such as terpenes and phenolic compounds are known to have numerous ecological roles, notably in defence against herbivores, pathogens and abiotic stresses and in interactions with competitors and mutualists. This book reviews recent developments in the field to provide a synthesis of the function, ecology and evolution of PSM, revealing our increased awareness of their integrative role in connecting natural systems. It emphasises the multiple roles of secondary metabolites in mediating the interactions between organisms and their environment at a range of scales of ecological organisation, demonstrating how genes encoding for PSM biosynthetic enzymes can have effects from the cellular scale within individual plants all the way to global environmental processes. A range of recent methodological advances, including molecular, transgenic and metabolomic techniques, are illustrated and promising directions for future studies are identified, making this a valuable reference for researchers and graduate students in the field

    Robust topology and discrete fiber orientation optimization under principal material uncertainty

    No full text
    This paper introduces a formulation of the robust topology optimization problem that is tailored for designing fiber-reinforced composite structures with spatially varying principal mechanical properties. Specifically, a methodology is developed that incorporates the spatial variability in the engineering constants of the composite lamina into the concurrent topology (i.e., material distribution) and morphology (i.e., fiber orientation distribution) optimization problem for the minimization of the robust compliance function. The spatial variability in the mechanical properties of the lamina is modeled as a homogeneous random field within the design domain by means of the Karhunen-Loe´ve series expansion, and is thereafter intrusively propagated into the stochastic finite element analysis of the composite structure. To carry out the stochastic finite element analysis per iteration of the optimization cycle, the first-order perturbation method is utilized for approximating the current state variables of the physical system. The resulting robust topology and fiber orientation optimization problem is formulated step-by-step for the minimization of the robust compliance function. With the view of solving the optimization problem at hand by means of gradient-based solution algorithms, the first-order derivatives of the involved design functions w.r.t. the associated design variables are analytically derived. The present work concludes with a series of numerical examples, focusing on the benchmark academic case studies of the 2D cantilever and the half part of the Messerschmitt-Bölkow-Blohm beam, aiming to demonstrate the developed methodology as well as to explore the effect that different parameterization instances of the random field bear on the predicted topology and morphology of the beams.</p
    corecore