5 research outputs found

    Polarization control of high order harmonics in the EUV photon energy range

    No full text
    International audienceWe report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploite

    Benchmarking for CODAL beam dynamics code: laser-plasma accelerator case study

    No full text
    International audienceLaser-plasma electron beams are known for their large divergence and energy spread while having ultra-short bunches, which differentiate them from standard RF accelerated beams.To study the laser-plasma beam dynamics and to design a transport line, simulations with *CODAL* [1], a code developed by SOLEIL in collaboration with IJCLab, have been used. *CODAL* is a 6D 'kick' tracking code based on the symplectic integration of the local hamiltonian for each element of the lattice. *CODAL* also includes collective effects simulations such as space charge, wakefield and coherent synchrotron radiation.To validate the studies in the framework of Laser-Plasma Acceleratior developpement, results from *CODAL* have been compared to *TraceWin* [2], a well-known tracking code developed by CEA.The comparison has been made using the outcome of Laser WakeField Acceleration (LWFA) particle-in-cell simulations as initial start particle coordinates from a case study of PALLAS project, a Laser-Plasma Accelerator test facility at IJCLab

    Benchmarking for CODAL beam dynamics code: laser-plasma accelerator case study

    No full text
    International audienceLaser-plasma electron beams are known for their large divergence and energy spread while having ultra-short bunches, which differentiate them from standard RF accelerated beams.To study the laser-plasma beam dynamics and to design a transport line, simulations with *CODAL* [1], a code developed by SOLEIL in collaboration with IJCLab, have been used. *CODAL* is a 6D 'kick' tracking code based on the symplectic integration of the local hamiltonian for each element of the lattice. *CODAL* also includes collective effects simulations such as space charge, wakefield and coherent synchrotron radiation.To validate the studies in the framework of Laser-Plasma Acceleratior developpement, results from *CODAL* have been compared to *TraceWin* [2], a well-known tracking code developed by CEA.The comparison has been made using the outcome of Laser WakeField Acceleration (LWFA) particle-in-cell simulations as initial start particle coordinates from a case study of PALLAS project, a Laser-Plasma Accelerator test facility at IJCLab

    The ELI-ALPS facility: the next generation of attosecond sources

    Get PDF
    International audienceThis review presents the technological infrastructure that will be available at the Extreme Light Infrastructure Attosecond Light Pulse Source (ELI-ALPS) international facility. ELI-ALPS will offer to the international scientific community ultrashort pulses in the femtosecond and attosecond domain for time-resolved investigations with unprecedented levels of high quality characteristics. The laser sources and the attosecond beamlines available at the facility will make attosecond technology accessible for scientists lacking access to these novel tools. Time-resolved investigation of systems of increasing complexity is envisaged using the end stations that will be provided at the facility
    corecore