5 research outputs found

    Lung anatomy, energy load, and ventilator-induced lung injury

    Get PDF
    High tidal volume can cause ventilator-induced lung injury (VILI), but positive end-expiratory pressure (PEEP) is thought to be protective. We aimed to find the volumetric VILI threshold and see whether PEEP is protective per se or indirectly

    Anticoagulation Management and Antithrombin Supplementation Practice during Veno-venous Extracorporeal Membrane Oxygenation: A Worldwide Survey.

    No full text
    WHAT WE ALREADY KNOW ABOUT THIS TOPIC Managing anticoagulation during veno-venous extracorporeal membrane oxygenation varies around the world among clinical sites. Understanding clinical practice is important when developing multicenter clinical studies. WHAT THIS ARTICLE TELLS US THAT IS NEW Based on 273 responses from 50 countries, unfractionated heparin is used in 96.6% of centers, with partial thromboplastin time monitoring in 41.8%, activated clotting time in 30.0%, and anti-factor Xa activity in 22.7% of centers. Antithrombin is monitored in 48.7% of centers and actively repleted in 38.1% centers, mainly in high-income regions and in pediatric patients. BACKGROUND There is a lack of consensus on how to manage anticoagulation during veno-venous extracorporeal membrane oxygenation, including antithrombin monitoring and supplementation. The authors' aim was to determine current practice in a large number of extracorporeal membrane oxygenation centers around the world. METHODS This was an electronic survey disseminated in 2018 to directors and coordinators of extracorporeal membrane oxygenation centers as well as to extracorporeal membrane oxygenation experts. Participating centers were classified according to some covariates that may affect practice, including 2017 gross national income per capita, primary patient population, and annual extracorporeal membrane oxygenation patient volume. RESULTS The authors analyzed 273 unique responses from 50 countries. Systemic anticoagulation was routinely prescribed in 264 (96.7%) centers, with unfractionated heparin being the drug of choice in 255 (96.6%) of them. The preferred method to monitor anticoagulation was activated partial thromboplastin time in 114 (41.8%) centers, activated clotting time in 82 (30.0%) centers, and anti-factor Xa activity in 62 (22.7%) centers. Circulating antithrombin activity was routinely monitored in 133 (48.7%) centers. Antithrombin supplementation was routinely prescribed in 104 (38.1%) centers. At multivariable analyzes, routine antithrombin supplementation was associated with national income, being less likely in lower- than in higher-income countries (odds ratio, 0.099 [95% CI, 0.022 to 0.45]; P = 0.003); with primary patient population being more frequent in mixed (odds ratio, 2.73 [1.23 to 6.0]; P = 0.013) and pediatric-only centers (odds ratio, 6.3 [2.98 to 13.2]; P < 0.001) than in adult-only centers; but not with annual volume of extracorporeal membrane oxygenation cases, being similarly common in smaller and larger centers (odds ratio, 1.00 [0.48 to 2.08]; P = 0.997). CONCLUSIONS There is large practice variation among institutions regarding anticoagulation management and antithrombin supplementation during veno-venous extracorporeal membrane oxygenation. The paucity of prospective studies and differences across institutions based on national income and primary patient population may contribute to these findings

    Thromboelastography-based anticoagulation management during extracorporeal membrane oxygenation: a safety and feasibility pilot study

    No full text
    Abstract Background There is no consensus on the management of anticoagulation during extracorporeal membrane oxygenation (ECMO). ECMO is currently burdened by a high rate of hemostatic complications, possibly associated with inadequate monitoring of heparin anticoagulation. This study aims to assess the safety and feasibility of an anticoagulation protocol for patients undergoing ECMO based on thromboelastography (TEG) as opposed to an activated partial thromboplastin time (aPTT)-based protocol. Methods We performed a multicenter, randomized, controlled trial in two academic tertiary care centers. Adult patients with acute respiratory failure treated with veno-venous ECMO were randomized to manage heparin anticoagulation using a TEG-based protocol (target 16–24 min of the R parameter, TEG group) or a standard of care aPTT-based protocol (target 1.5–2 of aPTT ratio, aPTT group). Primary outcomes were safety and feasibility of the study protocol. Results Forty-two patients were enrolled: 21 were randomized to the TEG group and 21 to the aPTT group. Duration of ECMO was similar in the two groups (9 (7–16) days in the TEG group and 11 (4–17) days in the aPTT group, p = 0.74). Heparin dosing was lower in the TEG group compared to the aPTT group (11.7 (9.5–15.3) IU/kg/h vs. 15.7 (10.9–21.3) IU/kg/h, respectively, p = 0.03). Safety parameters, assessed as number of hemorrhagic or thrombotic events and transfusions given, were not different between the two study groups. As for the feasibility, the TEG-based protocol triggered heparin infusion rate adjustments more frequently (p < 0.01) and results were less frequently in the target range compared to the aPTT-based protocol (p < 0.001). Number of prescribed TEG or aPTT controls (according to study groups) and protocol violations were not different between the study groups. Conclusions TEG seems to be safely used to guide anticoagulation management during ECMO. Its use was associated with the administration of lower heparin doses compared to a standard of care aPTT-based protocol. Trial registration ClinicalTrials.gov, October 22,2014. Identifier: NCT02271126
    corecore