112 research outputs found

    Observation of the skin-depth effect on the Casimir force between metallic surfaces

    Full text link
    We have performed comparative measurements of the Casimir force between a metallic plate and a transparent sphere coated with metallic films of different thicknesses. We have observed that, if the thickness of the coating is less than the skin-depth of the electromagnetic modes that mostly contribute to the interaction, the force is significantly smaller than that measured with a thick bulk-like film. Our results provide the first direct evidence of the skin-depth effect on the Casimir force between metallic surfaces.Comment: submitted for publication on Dec. 10, 2004. 3 figure

    New Challenges and Directions in Casimir Force Experiments

    Full text link
    This article is divided in three sections. In the first section we briefly review some high precision experiments on the Casimir force, underlying an important aspect of the analysis of the data. In the second section we discuss our recent results in the measurement of the Casimir force using non-trivial materials. In the third section we present some original ideas for experiments on new phenomena related to the Casimir effects.Comment: 6 pages, invited contribution to the 6th Workshop on Quantum Field Theory under the Influence of External Conditions (QFEXT03), Norman, Oklahoma, September 15-19, 200

    Force sensor for chameleon and Casimir force experiments with parallel-plate configuration

    Full text link
    The search for non-Newtonian forces has been pursued following many different paths. Recently it was suggested that hypothetical chameleon interactions, which might explain the mechanisms behind dark energy, could be detected in a high-precision force measurement. In such an experiment, interactions between parallel plates kept at constant separation could be measured as a function of the pressure of an ambient gas, thereby identifying chameleon interactions by their unique inverse dependence on the local mass density. During the past years we have been developing a new kind of setup complying with the high requirements of the proposed experiment. In this article we present the first and most important part of this setup -- the force sensor. We discuss its design, fabrication, and characterization. From the results of the latter we derive limits on chameleon interaction parameters that could be set by the forthcoming experiment. Finally, we describe the opportunity to use the same setup to measure Casimir forces at large surface separations with unprecedented accuracy, thereby potentially giving unambiguous answers to long standing open questions

    Structure-stiffness relation of live mouse brain tissue determined by depth-controlled indentation mapping

    Full text link
    The mechanical properties of brain tissue play a pivotal role in neurodevelopment and neurological disorders. Yet, at present, there is no consensus on how the different structural parts of the tissue contribute to its stiffness variations. Here, we have gathered depth-controlled indentation viscoelasticity maps of the hippocampus of isolated horizontal live mouse brain sections. Our results confirm the highly viscoelestic nature of the material and clearly show that the mechanical properties correlate with the different morphological layers of the samples investigated. Interestingly, the relative cell nuclei area seems to negatively correlate with the stiffness observed

    Computation and visualization of Casimir forces in arbitrary geometries: non-monotonic lateral forces and failure of proximity-force approximations

    Full text link
    We present a method of computing Casimir forces for arbitrary geometries, with any desired accuracy, that can directly exploit the efficiency of standard numerical-electromagnetism techniques. Using the simplest possible finite-difference implementation of this approach, we obtain both agreement with past results for cylinder-plate geometries, and also present results for new geometries. In particular, we examine a piston-like problem involving two dielectric and metallic squares sliding between two metallic walls, in two and three dimensions, respectively, and demonstrate non-additive and non-monotonic changes in the force due to these lateral walls.Comment: Accepted for publication in Physical Review Letters. (Expected publication: Vol. 99 (8) 2007

    On the torque on birefringent plates induced by quantum fluctuations

    Full text link
    We present detailed numerical calculations of the mechanical torque induced by quantum fluctuations on two parallel birefringent plates with in plane optical anisotropy, separated by either vacuum or a liquid (ethanol). The torque is found to vary as sin(2θ)\sin(2\theta), where θ\theta represents the angle between the two optical axes, and its magnitude rapidly increases with decreasing plate separation dd. For a 40 μ\mum diameter disk, made out of either quartz or calcite, kept parallel to a Barium Titanate plate at d100d\simeq 100 nm, the maximum torque (at θ=π4\theta={\pi\over 4}) is of the order of 1019\simeq 10^{-19} N\cdotm. We propose an experiment to observe this torque when the Barium Titanate plate is immersed in ethanol and the other birefringent disk is placed on top of it. In this case the retarded van der Waals (or Casimir-Lifshitz) force between the two birefringent slabs is repulsive. The disk would float parallel to the plate at a distance where its net weight is counterbalanced by the retarded van der Waals repulsion, free to rotate in response to very small driving torques.Comment: 7 figures, submitted to Phys. Rev.

    Virtual photons in imaginary time: Computing exact Casimir forces via standard numerical-electromagnetism techniques

    Full text link
    We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy (given sufficient computational resources). Our approach, based on well-established integration of the mean stress tensor evaluated via the fluctuation-dissipation theorem, is designed to directly exploit fast methods developed for classical computational electromagnetism, since it only involves repeated evaluation of the Green's function for imaginary frequencies (equivalently, real frequencies in imaginary time). We develop the approach by systematically examining various formulations of Casimir forces from the previous decades and evaluating them according to their suitability for numerical computation. We illustrate our approach with a simple finite-difference frequency-domain implementation, test it for known geometries such as a cylinder and a plate, and apply it to new geometries. In particular, we show that a piston-like geometry of two squares sliding between metal walls, in both two and three dimensions with both perfect and realistic metallic materials, exhibits a surprising non-monotonic ``lateral'' force from the walls.Comment: Published in Physical Review A, vol. 76, page 032106 (2007
    corecore