503 research outputs found

    Nociceptive-Evoked Potentials Are Sensitive to Behaviorally Relevant Stimulus Displacements in Egocentric Coordinates.

    Get PDF
    Feature selection has been extensively studied in the context of goal-directed behavior, where it is heavily driven by top-down factors. A more primitive version of this function is the detection of bottom-up changes in stimulus features in the environment. Indeed, the nervous system is tuned to detect fast-rising, intense stimuli that are likely to reflect threats, such as nociceptive somatosensory stimuli. These stimuli elicit large brain potentials maximal at the scalp vertex. When elicited by nociceptive laser stimuli, these responses are labeled laser-evoked potentials (LEPs). Although it has been shown that changes in stimulus modality and increases in stimulus intensity evoke large LEPs, it has yet to be determined whether stimulus displacements affect the amplitude of the main LEP waves (N1, N2, and P2). Here, in three experiments, we identified a set of rules that the human nervous system obeys to identify changes in the spatial location of a nociceptive stimulus. We showed that the N2 wave is sensitive to: (1) large displacements between consecutive stimuli in egocentric, but not somatotopic coordinates; and (2) displacements that entail a behaviorally relevant change in the stimulus location. These findings indicate that nociceptive-evoked vertex potentials are sensitive to behaviorally relevant changes in the location of a nociceptive stimulus with respect to the body, and that the hand is a particularly behaviorally important site

    A geometric model of defensive peripersonal space

    Get PDF
    Potentially harmful stimuli occurring within the defensive peripersonal space (DPPS), a protective area surrounding the body, elicit stronger defensive reactions. The spatial features of the DPPS are poorly defined and limited to descriptive estimates of its extent along a single dimension. Here we postulated a family of geometric models of the DPPS, to address two important questions with respect to its spatial features: What is its fine-grained topography? How does the nervous system represent the body area to be defended? As a measure of the DPPS, we used the strength of the defensive blink reflex elicited by electrical stimulation of the hand (hand-blink reflex, HBR), which is reliably modulated by the position of the stimulated hand in egocentric coordinates. We tested the goodness of fit of the postulated models to HBR data from six experiments in which we systematically explored the HBR modulation by hand position in both head-centered and body-centered coordinates. The best-fitting model indicated that 1) the nervous system's representation of the body area defended by the HBR can be approximated by a half-ellipsoid centered on the face and 2) the DPPS extending from this area has the shape of a bubble elongated along the vertical axis. Finally, the empirical observation that the HBR is modulated by hand position in head-centered coordinates indicates that the DPPS is anchored to the face. The modeling approach described in this article can be generalized to describe the spatial modulation of any defensive response

    Intracortical modulation, and not spinal inhibition, mediates placebo analgesia

    Get PDF
    Suppression of spinal responses to noxious stimulation has been detected using spinal fMRI during placebo analgesia, which is therefore increasingly considered a phenomenon caused by descending inhibition of spinal activity. However, spinal fMRI is technically challenging and prone to false-positive results. Here we recorded laser-evoked potentials (LEPs) during placebo analgesia in humans. LEPs allow neural activity to be measured directly and with high enough temporal resolution to capture the sequence of cortical areas activated by nociceptive stimuli. If placebo analgesia is mediated by inhibition at spinal level, this would result in a general suppression of LEPs rather than in a selective reduction of their late components. LEPs and subjective pain ratings were obtained in two groups of healthy volunteers - one was conditioned for placebo analgesia while the other served as unconditioned control. Laser stimuli at three suprathreshold energies were delivered to the right hand dorsum. Placebo analgesia was associated with a significant reduction of the amplitude of the late P2 component. In contrast, the early N1 component, reflecting the arrival of the nociceptive input to the primary somatosensory cortex (SI), was only affected by stimulus energy. This selective suppression of late LEPs indicates that placebo analgesia is mediated by direct intracortical modulation rather than inhibition of the nociceptive input at spinal level. The observed cortical modulation occurs after the responses elicited by the nociceptive stimulus in the SI, suggesting that higher order sensory processes are modulated during placebo analgesia

    Primary sensory cortices contain distinguishable spatial patterns of activity for each sense

    Get PDF
    Whether primary sensory cortices are essentially multisensory or whether they respond to only one sense is an emerging debate in neuroscience. Here we use a multivariate pattern analysis of functional magnetic resonance imaging data in humans to demonstrate that simple and isolated stimuli of one sense elicit distinguishable spatial patterns of neuronal responses, not only in their corresponding primary sensory cortex, but in other primary sensory cortices. These results indicate that primary sensory cortices, traditionally regarded as unisensory, contain unique signatures of other senses and, thereby, prompt a reconsideration of how sensory information is coded in the human brain

    Brain potentials evoked by intraepidermal electrical stimuli reflect the central sensitization of nociceptive pathways

    Get PDF
    Central sensitization (CS), the increased sensitivity of the central nervous system to somatosensory inputs, accounts for secondary hyperalgesia, a typical sign of several painful clinical conditions. Brain potentials elicited by mechanical punctate stimulation using flat-tip probes can provide neural correlates of CS, but their signal-to-noise ratio is limited by poor synchronisation of the afferent nociceptive input. Additionally, mechanical punctate stimulation does not activate nociceptors exclusively. In contrast, low-intensity intra-epidermal electrical stimulation (IES) allows selective activation of type-II Aδ mechano-heat nociceptors (II-AMHs), and elicits reproducible brain potentials. However, it is unclear whether hyperalgesia from IES occurs and co-exists with secondary mechanical punctate hyperalgesia, and whether the magnitude of the EEG responses evoked by IES within the hyperalgesic area is increased. To address these questions, we explored the modulation of the psychophysical and EEG responses to IES by intra-epidermal injection of capsaicin in healthy human subjects. We obtained three main results. First, the intensity of the sensation elicited by IES was significantly increased in participants who developed robust mechanical punctate hyperalgesia after capsaicin injection (i.e., responders), indicating that hyperalgesia from IES co-exists with punctate mechanical hyperalgesia. Second, the N2 peak magnitude of the EEG responses elicited by IES were significantly increased after the intra-epidermal injection of capsaicin in responders only. Third, a receiver-operator characteristics analysis showed that the N2 peak amplitude is clearly predictive of the presence of CS. These findings suggest that the EEG responses elicited by IES reflect secondary hyperalgesia, and therefore represent an objective correlate of CS

    Nociceptive-Evoked Potentials Are Sensitive to Behaviorally Relevant Stimulus Displacements in Egocentric Coordinates.

    Get PDF
    Feature selection has been extensively studied in the context of goal-directed behavior, where it is heavily driven by top-down factors. A more primitive version of this function is the detection of bottom-up changes in stimulus features in the environment. Indeed, the nervous system is tuned to detect fast-rising, intense stimuli that are likely to reflect threats, such as nociceptive somatosensory stimuli. These stimuli elicit large brain potentials maximal at the scalp vertex. When elicited by nociceptive laser stimuli, these responses are labeled laser-evoked potentials (LEPs). Although it has been shown that changes in stimulus modality and increases in stimulus intensity evoke large LEPs, it has yet to be determined whether stimulus displacements affect the amplitude of the main LEP waves (N1, N2, and P2). Here, in three experiments, we identified a set of rules that the human nervous system obeys to identify changes in the spatial location of a nociceptive stimulus. We showed that the N2 wave is sensitive to: (1) large displacements between consecutive stimuli in egocentric, but not somatotopic coordinates; and (2) displacements that entail a behaviorally relevant change in the stimulus location. These findings indicate that nociceptive-evoked vertex potentials are sensitive to behaviorally relevant changes in the location of a nociceptive stimulus with respect to the body, and that the hand is a particularly behaviorally important site

    Ultralow-frequency neural entrainment to pain

    Get PDF
    Nervous systems exploit regularities in the sensory environment to predict sensory input, adjust behavior, and thereby maximize fitness. Entrainment of neural oscillations allows retaining temporal regularities of sensory information, a prerequisite for prediction. Entrainment has been extensively described at the frequencies of periodic inputs most commonly present in visual and auditory landscapes (e.g., >0.5 Hz). An open question is whether neural entrainment also occurs for regularities at much longer timescales. Here, we exploited the fact that the temporal dynamics of thermal stimuli in natural environment can unfold very slowly. We show that ultralow-frequency neural oscillations preserved a long-lasting trace of sensory information through neural entrainment to periodic thermo-nociceptive input as low as 0.1 Hz. Importantly, revealing the functional significance of this phenomenon, both power and phase of the entrainment predicted individual pain sensitivity. In contrast, periodic auditory input at the same ultralow frequency did not entrain ultralow-frequency oscillations. These results demonstrate that a functionally significant neural entrainment can occur at temporal scales far longer than those commonly explored. The non-supramodal nature of our results suggests that ultralow-frequency entrainment might be tuned to the temporal scale of the statistical regularities characteristic of different sensory modalities

    Cocaine abuse as an immunological trigger in a case diagnosed with eales disease

    Get PDF
    Background: Eales disease is a clinical syndrome affecting the mid-peripheral retina with an idiopathic occlusive vasculitis and possible subsequent retinal neovascularization. The disease can develop into visually threatening complications. Case Presentation: We report the case of a 40-year-old Caucasian male with a history of cocaine abuse who presented with blurred vision in the left eye (LE). Fundus examination showed vitreous hemorrhages, peripheral sheathing of venous blood vessels, areas of retinal neovascularization in the LE, and peripheral occlusive phlebitis in the right eye. The full serologic panel was negative except for the heterozygous mutation of factor V Leiden. Clinical and biochemical parameters suggested a diagnosis of Eales disease. Therapy with dexamethasone, 1 mg per kg per day, tapered down slowly over 4 months, and peripheral laser photocoagulation allowed a regression of clinical signs and symptoms. Conclusion: This case shows an uncommon presentation of Eales disease associated with cocaine abuse. Both cocaine abuse and a thrombophilic pattern, as cofactors, might have sensitized the retinal microcirculation on the pathogenetic route to this retinal pathology. Furthermore, in view of this hypothesis, a thorough ocular and general medical history investigating drug abuse and coagulation disorders is recommended for ophthalmologists in such cases

    Evidence against pain specificity in the dorsal posterior insula

    Get PDF
    The search for a pain centre in the brain has long eluded neuroscientists. Although many regions of the brain have been shown to respond to painful stimuli, all of these regions also respond to other types of salient stimuli. In a recent paper, Segerdahl et al. (Nature Neuroscience, 2015) claims that the dorsal posterior insula (dpIns) is a pain-specific region based on the observation that the magnitude of regional cerebral blood flow (rCBF) fluctuations in the dpIns correlated with the magnitude of evoked pain. However, such a conclusion is, simply, not justified by the experimental evidence provided. Here we discuss three major factors that seriously question this claim
    corecore