822 research outputs found

    Regularization of fields for self-force problems in curved spacetime: foundations and a time-domain application

    Full text link
    We propose an approach for the calculation of self-forces, energy fluxes and waveforms arising from moving point charges in curved spacetimes. As opposed to mode-sum schemes that regularize the self-force derived from the singular retarded field, this approach regularizes the retarded field itself. The singular part of the retarded field is first analytically identified and removed, yielding a finite, differentiable remainder from which the self-force is easily calculated. This regular remainder solves a wave equation which enjoys the benefit of having a non-singular source. Solving this wave equation for the remainder completely avoids the calculation of the singular retarded field along with the attendant difficulties associated with numerically modeling a delta function source. From this differentiable remainder one may compute the self-force, the energy flux, and also a waveform which reflects the effects of the self-force. As a test of principle, we implement this method using a 4th-order (1+1) code, and calculate the self-force for the simple case of a scalar charge moving in a circular orbit around a Schwarzschild black hole. We achieve agreement with frequency-domain results to ~ 0.1% or better.Comment: 15 pages, 12 figures, 1 table. More figures, extended summar

    Rotating black holes in three-dimensional Ho\v{r}ava gravity

    Full text link
    We study black holes in the infrared sector of three-dimensional Ho\v{r}ava gravity. It is shown that black hole solutions with anti-de Sitter asymptotics are admissible only in the sector of the theory in which the scalar degree of freedom propagates infinitely fast. We derive the most general class of stationary, circularly symmetric, asymptotically anti-de Sitter black hole solutions. We also show that the theory admits black hole solutions with de Sitter and flat asymptotics, unlike three-dimensional general relativity. For all these cases, universal horizons may or may not exist depending on the choice of parameters. Solutions with de Sitter asymptotics can have universal horizons that lie beyond the de Sitter horizon.Comment: 16 pages, 9 figures, final published versio

    Self-force with (3+1) codes: a primer for numerical relativists

    Full text link
    Prescriptions for numerical self-force calculations have traditionally been designed for frequency-domain or (1+1) time-domain codes which employ a mode decomposition to facilitate in carrying out a delicate regularization scheme. This has prevented self-force analyses from benefiting from the powerful suite of tools developed and used by numerical relativists for simulations of the evolution of comparable-mass black hole binaries. In this work, we revisit a previously-introduced (3+1) method for self-force calculations, and demonstrate its viability by applying it to the test case of a scalar charge moving in a circular orbit around a Schwarzschild black hole. Two (3+1) codes originally developed for numerical relativity applications were independently employed, and in each we were able to compute the two independent components of the self-force and the energy flux correctly to within <1< 1%. We also demonstrate consistency between tt-component of the self-force and the scalar energy flux. Our results constitute the first successful calculation of a self-force in a (3+1) framework, and thus open opportunities for the numerical relativity community in self-force analyses and the perturbative modeling of extreme-mass-ratio inspirals.Comment: 23 pages, 13 figure
    • …
    corecore