72 research outputs found

    A hydro-elastic model of hydrocephalus

    Get PDF
    We combine elements of poroelasticity and of fluid mechanics to construct a mathematical model of the human brain and ventricular system. The model is used to study hydrocephalus, a pathological condition in which the normal flow of the cerebrospinal fluid is disturbed, causing the brain to become deformed. Our model extends recent work in this area by including flow through the aqueduct, by incorporating boundary conditions which we believe more accurately represent the anatomy of the brain and by including time dependence. This enables us to construct a quantitative model of the onset, development and treatment of this condition. We formulate and solve the governing equations and boundary conditions for this model and give results which are relevant to clinical observations

    Blood Diamonds and Non-State Actors

    Get PDF
    The KPCS is a unique undertaking. It has all of the bells and whistles required to be an effective watchdog for an industry prone to theft, corruption, smuggling, and violence. It currently has the power of law in almost eighty national jurisdictions, and it has the blessing of the United Nations and the WTO. It is tripartite in nature, encompassing a wide range of important industry players and civil society organizations from Europe, North America, and Africa. It is something of a tragedy, however. Its consensus decision making process has turned it into a dozy talk shop--unwilling and unable to deal with noncompliance. It could have been a model for other extractive industries beset by war. Instead, it has by and large ignored the failure of internal controls; it has sanctioned smuggling and condoned human rights abuse. It is questionable whether it could prevent another warlord from taking advantage of its weakness

    Analysis of leaf morphology and photosynthesis in deletion mutants of rice (Oryza sativa L.)

    Get PDF
    As a plant operating the C3 photosynthetic pathway and commonly grown under tropical conditions of high light intensity and temperature, rice (Oryza sativa) displays high levels of photorespiration, to the detriment of photosynthetic efficiency. For this reason it is thought that improvements to net photosynthesis via an increased photosynthetic efficiency could provide significant gains in terms of grain yield. There is great interest in 1. Introducing CO2 concentrating mechanisms into C3 crop plants such as the C4 photosynthetic pathway in order to facilitate enhanced photosynthetic efficiency. This requires an understanding of C3 and C4 leaf development and establishing whether there is sufficient plasticity in the rice genome to produce plants with C4-like properties. 2. Improving existing C3 photosynthesis by means of increasing leaf thickness, vein density and investigation of the impacts of mesophyll cell size. It is in this context that a forward screen of approximately 100 mutant lines of the indica rice variety IR64 was developed at Nottingham to search for relevant changes in leaf morphology. Mutant seed produced using chemical mutagenesis (diepoxybutane and ethylmethanesulfonate) and irradiation (gamma and fast neutron) was supplied by the International Rice Research Institute (IRRI) in the Philippines. A rapid low resolution screen was devised using light microscopy of fresh, untreated hand cut leaf sections of plants at the leaf six stage. Seven mutant lines were identified as showing altered leaf morphologies and were termed alm mutants. alm1, alm5 and alm6 displayed a reduced interveinal distance between neighbouring veins, a common feature of C4 plants with Kranz anatomy, whilst alm1 and alm5 also displayed a reduction in the size of minor veins. alm3 and alm4 produced significantly thicker leaves than wild type plants, whilst the leaves of alm7 were significantly thinner. A detailed anatomical characterisation of leaf structure revealed that alm3, alm4 and alm5 plants all displayed a significant reduction in the size of mesophyll cells and that for all the mutant lines, the distance between veins was strongly correlated with mesophyll cell size rather than the number of mesophyll cells spanning the interveinal regions. Physiological properties of the alm lines were investigated using infra-red gas analysis (IRGA) measurements of gas exchange and chlorophyll fluorescence. It was shown that none of the mutant lines displayed an increase in photosynthetic capacity when compared to wild type plants, even in lines which were shown to possess what was thought to be a favourable leaf anatomy, quite possibly a result of widespread effects of the mutation process. The alm1 line was shown to display interesting physiological responses, with almost no transpiration and a severely reduced photosynthetic capacity, yet functioning stomata and an unimpaired stomatal conductance. In conclusion, the future success of photosynthetic improvement in rice will rely on the screen of much larger numbers of mutant lines of rice and C4 plants in order to identify the genes determining key conserved morphological features such as interveinal cell number, cell size and the degree to which rice mesophyll cells are lobed

    Subcellular distribution of a neuronal nicotinic acetylcholine receptor in the rat brain

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX182111 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Analysis of leaf morphology and photosynthesis in deletion mutants of rice (Oryza sativa L.)

    Get PDF
    As a plant operating the C3 photosynthetic pathway and commonly grown under tropical conditions of high light intensity and temperature, rice (Oryza sativa) displays high levels of photorespiration, to the detriment of photosynthetic efficiency. For this reason it is thought that improvements to net photosynthesis via an increased photosynthetic efficiency could provide significant gains in terms of grain yield. There is great interest in 1. Introducing CO2 concentrating mechanisms into C3 crop plants such as the C4 photosynthetic pathway in order to facilitate enhanced photosynthetic efficiency. This requires an understanding of C3 and C4 leaf development and establishing whether there is sufficient plasticity in the rice genome to produce plants with C4-like properties. 2. Improving existing C3 photosynthesis by means of increasing leaf thickness, vein density and investigation of the impacts of mesophyll cell size. It is in this context that a forward screen of approximately 100 mutant lines of the indica rice variety IR64 was developed at Nottingham to search for relevant changes in leaf morphology. Mutant seed produced using chemical mutagenesis (diepoxybutane and ethylmethanesulfonate) and irradiation (gamma and fast neutron) was supplied by the International Rice Research Institute (IRRI) in the Philippines. A rapid low resolution screen was devised using light microscopy of fresh, untreated hand cut leaf sections of plants at the leaf six stage. Seven mutant lines were identified as showing altered leaf morphologies and were termed alm mutants. alm1, alm5 and alm6 displayed a reduced interveinal distance between neighbouring veins, a common feature of C4 plants with Kranz anatomy, whilst alm1 and alm5 also displayed a reduction in the size of minor veins. alm3 and alm4 produced significantly thicker leaves than wild type plants, whilst the leaves of alm7 were significantly thinner. A detailed anatomical characterisation of leaf structure revealed that alm3, alm4 and alm5 plants all displayed a significant reduction in the size of mesophyll cells and that for all the mutant lines, the distance between veins was strongly correlated with mesophyll cell size rather than the number of mesophyll cells spanning the interveinal regions. Physiological properties of the alm lines were investigated using infra-red gas analysis (IRGA) measurements of gas exchange and chlorophyll fluorescence. It was shown that none of the mutant lines displayed an increase in photosynthetic capacity when compared to wild type plants, even in lines which were shown to possess what was thought to be a favourable leaf anatomy, quite possibly a result of widespread effects of the mutation process. The alm1 line was shown to display interesting physiological responses, with almost no transpiration and a severely reduced photosynthetic capacity, yet functioning stomata and an unimpaired stomatal conductance. In conclusion, the future success of photosynthetic improvement in rice will rely on the screen of much larger numbers of mutant lines of rice and C4 plants in order to identify the genes determining key conserved morphological features such as interveinal cell number, cell size and the degree to which rice mesophyll cells are lobed

    Missing Momentum Reconstruction and Spin Measurements at Hadron Colliders

    Full text link
    We study methods for reconstructing the momenta of invisible particles in cascade decay chains at hadron colliders. We focus on scenarios, such as SUSY and UED, in which new physics particles are pair produced. Their subsequent decays lead to two decay chains ending with neutral stable particles escaping detection. Assuming that the masses of the decaying particles are already measured, we obtain the momenta by imposing the mass-shell constraints. Using this information, we develop techniques of determining spins of particles in theories beyond the standard model. Unlike the methods relying on Lorentz invariant variables, this method can be used to determine the spin of the particle which initiates the decay chain. We present two complementary ways of applying our method by using more inclusive variables relying on kinematic information from one decay chain, as well as constructing correlation variables based on the kinematics of both decay chains in the same event.Comment: Version to appear in JHE

    A View from the Top: International Politics, Norms and the Worldwide Growth of NGOs

    Get PDF
    This article provides a top-down explanation for the rapid growth of nongovernmental organizations (NGOs) in the postwar period, focusing on two aspects of political globalization. First, I argue that international political opportunities in the form of funding and political access have expanded enormously in the postwar period and provided a structural environment highly conducive to NGO growth. Secondly, I present a norm-based argument and trace the rise of a pro-NGO norm in the 1980s and 1990s among donor states and intergovernmental organizations (IGOs), which has actively promoted the spread of NGOs to non-Western countries. The article ends with a brief discussion of the symbiotic relationship among NGOs, IGOs, and states promoting international cooperation

    Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk

    Get PDF
    We performed a meta-analysis of five genome-wide association studies to identify common variants influencing colorectal cancer (CRC) risk comprising 8,682 cases and 9,649 controls. Replication analysis was performed in case-control sets totaling 21,096 cases and 19,555 controls. We identified three new CRC risk loci at 6p21 (rs1321311, near CDKN1A; P = 1.14 × 10(-10)), 11q13.4 (rs3824999, intronic to POLD3; P = 3.65 × 10(-10)) and Xp22.2 (rs5934683, near SHROOM2; P = 7.30 × 10(-10)) This brings the number of independent loci associated with CRC risk to 20 and provides further insight into the genetic architecture of inherited susceptibility to CRC.Swedish Research Council et al.Manuscrip

    Recurrent Coding Sequence Variation Explains only A Small Fraction of the Genetic Architecture of Colorectal Cancer

    Get PDF
    Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10-7), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10-7); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10-
    • …
    corecore