3 research outputs found

    Detection of PatIent-Level distances from single cell genomics and pathomics data with Optimal Transport (PILOT)

    No full text
    Although clinical applications represent the next challenge in single-cell genomics and digital pathology, we still lack computational methods to analyze single-cell or pathomics data to find sample-level trajectories or clusters associated with diseases. This remains challenging as single-cell/pathomics data are multi-scale, i.e., a sample is represented by clusters of cells/structures, and samples cannot be easily compared with each other. Here we propose PatIent Level analysis with Optimal Transport (PILOT). PILOT uses optimal transport to compute the Wasserstein distance between two individual single-cell samples. This allows us to perform unsupervised analysis at the sample level and uncover trajectories or cellular clusters associated with disease progression. We evaluate PILOT and competing approaches in single-cell genomics or pathomics studies involving various human diseases with up to 600 samples/patients and millions of cells or tissue structures. Our results demonstrate that PILOT detects disease-associated samples from large and complex single-cell or pathomics data. Moreover, PILOT provides a statistical approach to find changes in cell populations, gene expression, and tissue structures related to the trajectories or clusters supporting interpretation of predictions.</p

    Randomized Trial on the Effect of an Oral Spleen Tyrosine Kinase Inhibitor in the Treatment of IgA Nephropathy

    No full text
    IntroductionWe reported increased spleen tyrosine kinase (SYK) expression in kidney biopsies of patients with IgA nephropathy (IgAN) and that inhibition of SYK reduces inflammatory cytokines production from IgA stimulated mesangial cells.MethodsThis study was a double-blind, randomized, placebo-controlled phase 2 trial of fostamatinib (an oral SYK inhibitor) in 76 patients with IgAN. Patients were randomized to receive placebo, fostamatinib at 100 mg or 150 mg twice daily for 24 weeks on top of maximum tolerated dose of renin-angiotensin system inhibitors. The primary end point was reduction of proteinuria. Secondary end points included change from baseline in estimated glomerular filtration rate (eGFR) and kidney histology.ResultsAlthough we could not detect significant reduction in proteinuria with fostamatinib overall, in a predetermined subgroup analysis, there was a trend for dose-dependent reduction in median proteinuria (from baseline to 24 weeks by 14%, 27%, and 36% in the placebo, fostamatinib 100 mg, and 150 mg groups, respectively) in patients with baseline urinary protein-to-creatinine ratios (UPCR) more than 1000 mg/g. Kidney function (eGFR) remained stable in all groups. Fostamatinib was well-tolerated. Side effects included diarrhea, hypertension, and increased liver enzymes. Thirty-nine patients underwent repeat biopsy showing reductions in SYK staining associated with therapy at low dose (-1.5 vs. 1.7 SYK+ cells/glomerulus in the placebo group, P ConclusionsThere was a trend toward reduction in proteinuria with fostamatinib in a predefined analysis of high risk patients with IgAN despite maximal care, as defined by baseline UPCR greater than 1000 mg/g. Further study may be warranted

    Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort

    No full text
    Individuals with rare kidney diseases account for 5-10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure.People aged 0-96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan-Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window).Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9-16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p Background Methods Findings Interpretation Funding</p
    corecore