651 research outputs found

    Spin Gap in a Doped Kondo Chain

    Full text link
    We show that the Kondo chain away from half-filling has a spin gap upon the introduction of an additional direct Heisenberg coupling between localized spins. This is understood in the weak-Kondo-coupling limit of the Heisenberg-Kondo lattice model by bosonization and in the strong-coupling limit by a mapping to a modified t-J model. Only for certain ranges of filling and Heisenberg coupling does the spin gap phase extend from weak to strong coupling.Comment: 4 pages RevTeX including 4 eps figures; minor corrections and clarification

    Non-perturbative approach to Luttinger's theorem in one dimension

    Full text link
    The Lieb-Schultz-Mattis theorem for spin chains is generalized to a wide range of models of interacting electrons and localized spins in one-dimensional lattice. The existence of a low-energy state is generally proved except for special commensurate fillings where a gap may occur. Moreover, the crystal momentum of the constructed low-energy state is 2kF2k_F, where kFk_F is the Fermi momentum of the non-interacting model, corresponding to Luttinger's theorem. For the Kondo lattice model, our result implies that kFk_F must be calculated by regarding the localized spins as additional electrons.Comment: Note added on the rigorous proof given by H. Tasaki; also added some references; 5 pages, REVTEX (no figure

    Impurity in a Luttinger liquid away from half-filling: a numerical study

    Full text link
    Conformal field theory gives quite detailed predictions for the low energy spectrum and scaling exponents of a massless Luttinger liquid at generic filling in the presence of an impurity. While these predictions were verified for half-filled systems, there was till now no analysis away from this particular filling. Here, we fill in this gap by numerically investigating a quarter-filled system using the density matrix renormalization group technique. Our results confirm conformal field theory predictions, and suggest that they are indeed valid for arbitrary fillings.Comment: 9 pages (include figures), one reference added in this new versio

    The clustering of intermediate redshift quasars as measured by the Baryon Oscillation Spectroscopic Survey

    Get PDF
    We measure the quasar two-point correlation function over the redshift range 2.2<z<2.8 using data from the Baryon Oscillation Spectroscopic Survey. We use a homogeneous subset of the data consisting of 27,129 quasars with spectroscopic redshifts---by far the largest such sample used for clustering measurements at these redshifts to date. The sample covers 3,600 square degrees, corresponding to a comoving volume of 9.7(Gpc/h)^3 assuming a fiducial LambdaCDM cosmology, and it has a median absolute i-band magnitude of -26, k-corrected to z=2. After accounting for redshift errors we find that the redshift space correlation function is fit well by a power-law of slope -2 and amplitude s_0=(9.7\pm 0.5)Mpc/h over the range 3<s<25Mpc/h. The projected correlation function, which integrates out the effects of peculiar velocities and redshift errors, is fit well by a power-law of slope -1 and r_0=(8.4\pm 0.6)Mpc/h over the range 4<R<16Mpc/h. There is no evidence for strong luminosity or redshift dependence to the clustering amplitude, in part because of the limited dynamic range in our sample. Our results are consistent with, but more precise than, previous measurements at similar redshifts. Our measurement of the quasar clustering amplitude implies a bias factor of b~3.5 for our quasar sample. We compare the data to models to constrain the manner in which quasars occupy dark matter halos at z~2.4 and infer that such quasars inhabit halos with a characteristic mass of ~10^{12}Msun/h with a duty cycle for the quasar activity of 1 per cent.Comment: 20 pages, 18 figures. Minor modifications to match version accepted by journa

    Equal Time Correlations in Haldane Gap Antiferromagnets

    Full text link
    The S=1S=1 antiferromagnetic Heisenberg chain both with and without single ion anisotropy is studied. Using the recently proposed density matrix renormalization group technique we calculate the energy gaps as well as several different correlation functions. The two gaps, Δ,Δ\Delta_{||}, \Delta_\perp, along with associated correlation lengths and velocities are determined. The numerical results are shown to be in good agreement with theoretical predictions derived from the nonlinear sigma model and a free boson model. We also study the S=1/2S=1/2 excitations that occur at the ends of open chains; in particular we study the behavior associated with open boundary conditions, using a model of S=1/2S=1/2 spins coupled to the free bosons.Comment: 32 pages, uufiles encoded REVTEX 3.0, 19 postscript figures included, UBCTP-93-02

    Cosmic 21-cm Fluctuations as a Probe of Fundamental Physics

    Full text link
    Fluctuations in high-redshift cosmic 21-cm radiation provide a new window for observing unconventional effects of high-energy physics in the primordial spectrum of density perturbations. In scenarios for which the initial state prior to inflation is modified at short distances, or for which deviations from scale invariance arise during the course of inflation, the cosmic 21-cm power spectrum can in principle provide more precise measurements of exotic effects on fundamentally different scales than corresponding observations of cosmic microwave background anisotropies.Comment: 8 pages, 2 figure

    A Guide to Handling Missing Data in Cost-Effectiveness Analysis Conducted Within Randomised Controlled Trials

    Get PDF
    The authors would like to thank Professor Adrian Grant and the team at the University of Aberdeen (Professor Craig Ramsay, Janice Cruden, Charles Boachie, Professor Marion Campbell and Seonaidh Cotton) who kindly allowed the REFLUX dataset to be used for this work, and Eldon Spackman for kindly sharing the Stata (R) code for calculating the probability that an intervention is cost effective following MI. The authors are grateful to the reviewers for their comments, which greatly improved this paper. M. G. is recipient of a Medical Research Council Early Career Fellowship in Economics of Health (grant number: MR/K02177X/1). I. R. W. was supported by the Medical Research Council [Unit Programme U105260558]. No specific funding was obtained to produce this paper. The authors declare no conflicts of interest.Missing data are a frequent problem in cost-effectiveness analysis (CEA) within a randomised controlled trial. Inappropriate methods to handle missing data can lead to misleading results and ultimately can affect the decision of whether an intervention is good value for money. This article provides practical guidance on how to handle missing data in within-trial CEAs following a principled approach: (i) the analysis should be based on a plausible assumption for the missing data mechanism, i.e. whether the probability that data are missing is independent of or dependent on the observed and/or unobserved values; (ii) the method chosen for the base-case should fit with the assumed mechanism; and (iii) sensitivity analysis should be conducted to explore to what extent the results change with the assumption made. This approach is implemented in three stages, which are described in detail: (1) descriptive analysis to inform the assumption on the missing data mechanism; (2) how to choose between alternative methods given their underlying assumptions; and (3) methods for sensitivity analysis. The case study illustrates how to apply this approach in practice, including software code. The article concludes with recommendations for practice and suggestions for future research.Medical Research Council Early Career Fellowship in Economics of Health MR/K02177X/1Medical Research Council UK (MRC) U105260558Medical Research Council UK (MRC) MC_U105260558 MR/K02177X/

    Statistical Characterization of the Chandra Source Catalog

    Full text link
    The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray sources in a total area of ~0.75% of the entire sky, using data from ~3,900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data-set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other, large Chandra catalogs, such as the ChaMP Point Source Catalog (Kim et al. 2007) or the 2 Mega-second Deep Field Surveys (Alexander et al. 2003), while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and extensive simulations of blank-sky and point source populations.Comment: To be published in the Astrophysical Journal Supplement Series (Fig. 52 replaced with a version which astro-ph can convert to PDF without issues.
    corecore