2 research outputs found

    Pyridyl-2,5-Diketopiperazines as Potent, Selective, and Orally Bioavailable Oxytocin Antagonists: Synthesis, Pharmacokinetics, and In Vivo Potency

    No full text
    A six-stage stereoselective synthesis of indanyl-7-(3′-pyridyl)-(3<i>R</i>,6<i>R</i>,7<i>R</i>)-2,5-diketopiperazines oxytocin antagonists from indene is described. SAR studies involving mono- and disubstitution in the 3′-pyridyl ring and variation of the 3-isobutyl group gave potent compounds (p<i>K</i><sub>i</sub> > 9.0) with good aqueous solubility. Evaluation of the pharmacokinetic profile in the rat, dog, and cynomolgus monkey of those derivatives with low cynomolgus monkey and human intrinsic clearance gave 2′,6′-dimethyl-3′-pyridyl <i>R</i>-<i>sec</i>-butyl morpholine amide Epelsiban (<b>69</b>), a highly potent oxytocin antagonist (p<i>K</i><sub>i</sub> = 9.9) with >31000-fold selectivity over all three human vasopressin receptors hV1aR, hV2R, and hV1bR, with no significant P450 inhibition. Epelsiban has low levels of intrinsic clearance against the microsomes of four species, good bioavailability (55%) and comparable potency to atosiban in the rat, but is 100-fold more potent than the latter in vitro and was negative in the genotoxicity screens with a satisfactory oral safety profile in female rats

    Identification of a Novel and Selective Series of Itk Inhibitors via a Template-Hopping Strategy

    No full text
    Inhibition of Itk potentially constitutes a novel, nonsteroidal treatment for asthma and other T-cell mediated diseases. In-house kinase cross-screening resulted in the identification of an aminopyrazole-based series of Itk inhibitors. Initial work on this series highlighted selectivity issues with several other kinases, particularly AurA and AurB. A template-hopping strategy was used to identify a series of aminobenzothiazole Itk inhibitors, which utilized an inherently more selective hinge binding motif. Crystallography and modeling were used to rationalize the observed selectivity. Initial exploration of the SAR around this series identified potent Itk inhibitors in both enzyme and cellular assays
    corecore