735 research outputs found

    High index top layer for multimaterial coatings

    Get PDF
    For application in future cryogenically cooled gravitational wave detectors, the thermal noise of low absorbing mirror coatings has to be reduced. The development of low mechanical and optical loss materials is challenging, but thermal noise reduction can be significantly supported by using a multimaterial coating design. We analyze the possible improvement of the total (optical and mechanical) loss of a three-material based coating obtained by optimizing the properties of the top layer of the coating stack. A top-layer material with sufficiently high refractive index could have a significantly higher optical and mechanical loss than currently used tantala, while still enabling reduction of the total coating loss. Restrictions on possible top-layer material properties are made, and the option of a crystalline top layer is discussed

    Thermal noise from icy mirrors in gravitational wave detectors

    Get PDF
    The detection of gravitational waves has established a new and very exciting field of astronomy in the past few years. To increase the number of detections and allow observation of a wider range of sources, several future gravitational wave detectors will operate at cryogenic temperatures. Recent investigations of a mirror in one of the cryostats of the Japanese KAGRA detector showed a decrease in reflectivity due to ice growth, induced by residual water molecules moving from the warm to the cold sections of the detector's vacuum system. Based on the optical measurements made in KAGRA, in this paper we calculate the implications of an ice layer on coating thermal noise for the planned European Einstein Telescope. We find coating thermal noise to oscillate, due to periodic reflectivity changes as the ice layer grows. The average coating thermal noise increases significantly over a time of one year with a larger increase at higher temperatures

    Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry

    Get PDF
    The dielectric thin-film coating on high-power optical components is often the weakest region and will fail at elevated optical fluences. A comparison of single-layer coatings of ZrO2, LiF, Ta2O5, SiN, and SiO2 along with anti-reflection (AR) coatings optimized at 1064 nm comprised of ZrO2 and Ta2O5 was made, and the results of photothermal common-path interferometry (PCI) and a laser-induced damage threshold (LIDT) are presented here. The coatings were grown by radio frequency (RF) sputtering, pulsed direct-current (DC) sputtering, ion-assisted electron beam evaporation (IAD), and thermal evaporation. Test regimes for LIDT used pulse durations of 9.6 ns at 100 Hz for 1000-on-1 and 1-on-1 regimes at 1064 nm for single-layer and AR coatings, and 20 ns at 20 Hz for a 200-on-1 regime to compare the //ZrO2/SiO2 AR coating

    Investigating the relationship between material properties and laser-induced damage threshold of dielectric optical coatings at 1064 nm

    Get PDF
    The Laser Induced Damage Threshold (LIDT) and material properties of various multi-layer amorphous dielectric optical coatings, including Nb2O5, Ta2O5, SiO2, TiO2, ZrO2, AlN, SiN, LiF and ZnSe, have been studied. The coatings were produced by ion assisted electron beam and thermal evaporation; and RF and DC magnetron sputtering at Helia Photonics Ltd, Livingston, UK. The coatings were characterized by optical absorption measurements at 1064 nm by Photothermal Common-path Interferometry (PCI). Surface roughness and damage pits were analyzed using atomic force microscopy. LIDT measurements were carried out at 1064 nm, with a pulse duration of 9.6 ns and repetition rate of 100 Hz, in both 1000-on-1 and 1-on-1 regimes. The relationship between optical absorption, LIDT and post-deposition heattreatment is discussed, along with analysis of the surface morphology of the LIDT damage sites showing both coating and substrate failure

    Medium range structural order in amorphous tantala spatially resolved with changes to atomic structure by thermal annealing

    Get PDF
    Amorphous tantala (a-Ta2O5) is an important technological material that has wide ranging applications in electronics, optics and the biomedical industry. It is used as the high refractive index layers in the multi-layer dielectric mirror coatings in the latest generation of gravitational wave interferometers, as well as other precision interferometers. One of the current limitations in sensitivity of gravitational wave detectors is Brownian thermal noise that arises from the tantala mirror coatings. Measurements have shown differences in mechanical loss of the mirror coatings, which is directly related to Brownian thermal noise, in response to thermal annealing. We utilise scanning electron diffraction to perform Fluctuation Electron Microscopy (FEM) on Ion Beam Sputtered (IBS) amorphous tantala coatings, definitively showing an increase in the medium range order (MRO), as determined from the variance between the diffraction patterns in the scan, due to thermal annealing at increasing temperatures. Moreover, we employ Virtual Dark-Field Imaging (VDFi) to spatially resolve the FEM signal, enabling investigation of the persistence of the fragments responsible for the medium range order, as well as the extent of the ordering over nm length scales, and show ordered patches larger than 5 nm in the highest temperature annealed sample. These structural changes directly correlate with the observed changes in mechanical loss.Comment: 22 pages, 5 figure

    Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 µm

    Get PDF
    The sensitivity of 2nd and 3rd generations of interferometric gravitational wave detectors will be limited by thermal noise of the test-mass mirrors and highly reflective coatings. Recently developed crystalline coatings show a promising thermal noise reduction compared to presently used amorphous coatings. However, stringent requirements apply to the optical properties of the coatings as well. We have mapped the optical absorption of a crystalline AlGaAs coating which is optimized for high reflectivity for a wavelength of 1064nm. The absorption was measured at 1550nm where the coating stack transmits approximately 70% of the laser light. The measured absorption was lower than (30.2 +/- 11.1)ppm which is equivalent to (3.6 +/- 1.3)ppm for a coating stack that is highly reflective at 1530nm. While this is a very promising low absorption result for alternative low--loss coating materials, further work will be necessary to reach the requirements of <1ppm for future gravitational wave detectors. Jessica Steinlechner, Iain W Martin, Angus Bell, Garrett Cole, Jim Hough, Steven Penn, Sheila Rowan, Sebastian Steinlechne

    Optical absorption of ion-beam sputtered amorphous silicon coatings

    Get PDF
    Low mechanical loss at low temperatures and a high index of refraction should make silicon optimally suited for thermal noise reduction in highly reflective mirror coatings for gravitational wave detectors. However, due to high optical absorption, amorphous silicon (aSi) is unsuitable for being used as a direct high-index coating material to replace tantala. A possible solution is a multimaterial design, which enables exploitation of the excellent mechanical properties of aSi in the lower coating layers. The possible number of aSi layers increases with absorption reduction. In this work, the optimum heat treatment temperature of aSi deposited via ion-beam sputtering was investigated and found to be 450 °C. For this temperature, the absorption after deposition of a single layer of aSi at 1064 nm and 1550 nm was reduced by more than 80%

    The promises of gravitational-wave astronomy

    Get PDF
    No abstract available

    Anomalous optical surface absorption in nominally pure silicon samples at 1550 nm

    Get PDF
    The announcement of the direct detection of Gravitational Waves (GW) by the LIGO and Virgo collaboration in February 2016 has removed any uncertainty around the possibility of GW astronomy. It has demonstrated that future detectors with sensitivities ten times greater than the Advanced LIGO detectors would see thousands of events per year. Many proposals for such future interferometric GW detectors assume the use of silicon test masses. Silicon has low mechanical loss at low temperatures, which leads to low displacement noise for a suspended interferometer mirror. In addition to the low mechanical loss, it is a requirement that the test masses have a low optical loss. Measurements at 1550 nm have indicated that material with a low enough bulk absorption is available; however there have been suggestions that this low absorption material has a surface absorption of > 100 ppm which could preclude its use in future cryogenic detectors. We show in this paper that this surface loss is not intrinsic but is likely to be a result of particular polishing techniques and can be removed or avoided by the correct polishing procedure. This is an important step towards high gravitational wave detection rates in silicon based instruments
    corecore