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Amorphous tantala (a-Ta;0s) is an important technological material that has wide ranging applications in elec-
tronics, optics and the biomedical industry. It is used as the high refractive index layers in the multi-layer dielec-
tric mirror coatings in the latest generation of gravitational wave interferometers, as well as other precision
interferometers. One of the current limitations in sensitivity of gravitational wave detectors is Brownian thermal
noise that arises from the tantala mirror coatings. Measurements have shown differences in mechanical loss of
the mirror coatings, which is directly related to Brownian thermal noise, in response to thermal annealing. We
utilise scanning electron diffraction to perform a modified version of Fluctuation Electron Microscopy (FEM)
on Ion Beam Sputtered (IBS) amorphous tantala coatings, definitively showing an increase in the medium
range order (MRO), as determined from the variance between the diffraction patterns in the scan, due to thermal
annealing at increasing temperatures. Moreover, we employ Virtual Dark-Field Imaging (VDFi) to spatially re-
solve the FEM signal, enabling investigation of the persistence of the fragments responsible for the medium
range order, as well as the extent of the ordering over nm length scales, and show ordered patches larger than
5 nm in the highest temperature annealed sample. These structural changes directly correlate with the observed

Keywords:

Amorphous materials
Fluctuation electron microscopy
Nanodiffraction

Medium-range order
Tantalum-pentoxide

Internal friction

changes in mechanical loss.
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1. Introduction

lon-beam sputtered amorphous tantala (a-Ta,Os) is often the materi-
al of choice for the high refractive index layer of highly reflective thin film
coatings and find widespread applications that range from optical atomic
clocks [1], ring laser gyroscopes [2], frequency comb techniques [3] and
high-precision interferometers such as the Laser Interferometer
Gravitational-wave Observatory (LIGO) [4]. Amorphous tantala also has
applications that include insulating films with high dielectric constant
for electronics [5] and corrosion resistant coatings for biomedical
applications [6].

However, the performance of the coatings must be improved to
make them a viable option for future upgrades to ultra-high precision
gravitational wave interferometers, which are currently expected to
be limited, at their most sensitive frequencies, by thermal noise arising
from the coatings. To do so, it is necessary to understand changes in the
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atomic structure that occur during manufacturing and post-processing.
Previous studies have shown that doping and annealing of the thin films
cause considerable changes to the macroscopic properties such as opti-
cal absorption, scattering and mechanical loss [7-9]. Mechanical loss is
equivalent to internal friction and is defined as the reciprocal of the me-
chanical Q factor, a quantity that describes the level of damping in an os-
cillator; a higher Q value indicates a lower rate of energy loss per
oscillation with respect to the energy that is stored within the oscillator.
This measure of mechanical stability and its relationship to Brownian
thermal noise is quantified through the fluctuation dissipation theorem
by Callen and Greene [10]. In general, only small changes are observed
in the atomic structure of the coatings of the same material prepared
by different methods when studied by electron diffraction reduced den-
sity function (RDF) analysis (which appear to be only sensitive to short
range order, principally around the 1st and 2nd nearest neighbours, and
up to a maximum of about 1 nm, and consequently cannot distinguish
between atomistic models that contain or do not contain nanoscale
order) [11-13]. A previous study using this technique has however
demonstrated a correlation between mechanical loss and the concen-
trations of titania in titania-doped tantala [14]. Extended X-ray
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Absorption Fine Structure (EXAFS) shows more extensive order to per-
haps the 3rd or 4th nearest neighbour and is chemically sensitive to the
ordering about specific atoms, although this still does not reveal any
order beyond 1 nm. Our recent work has shown that this provides fur-
ther insights into the behaviour on annealing [15]. The previous elec-
tron diffraction studies have shown the atomic structure to be
homogeneous at volumes probed with electron beams of 50 nm in lat-
eral extent up to a 600 °C heat treatment, whereas in the present
study the atomic structure is shown to be heterogeneous over volumes
probed with an electron beam of 2 nm in lateral extent. It has been sug-
gested previously, that this apparent homogeneity of the coating atomic
structure is a consequence of the scale at which the structure has been
examined; the inherent averaging over volumes containing hundreds
of millions to hundreds of billions of atoms averages out any local struc-
tural differences in the materials. It is then expected for there to be a
peak in the heterogeneity of the atomic structure at a scale determined
by the volume of the material probed, coinciding with the maximum
variance in structural order. In this work, the volume of material probed
contains in the order of thousands of atoms, and proper variation in the
ordering of the structure at the medium range can be quantified.

Fluctuation Electron Microscopy (FEM) is a diffraction and/or imag-
ing technique that quantifies medium range order (MRO) in the roughly
1 to 3 nm range. The original formulation of FEM Gibson and Treacy [17]
examines the MRO by measuring spatially resolved diffracted intensity
fluctuations from nano-volumes in the sample material through the
normalised variance,

(k@)
Y=y " W

where I (r, k, Q) is the diffracted intensity as a function of position r on
the sample, scattering vector k, probe size Q, and {...) indicates averag-
ing over r. The technique is sensitive to three- and four-body correla-
tions [16], and the fluctuations are maximally sensitive when the
electron probe size is of comparable length scale to the MRO structural
ordering being probed. So the extent of MRO is quantified through the
magnitude of the variance of the diffracted intensity, as a function of
scattering vector over a length scale determined by the size of probe
used. Originally proposed by Gibson and Treacy [17], the technique
was initially carried out using dark-field imaging in the TEM, although
an equivalent experiment can be carried out using scanning diffraction
[18]. This latter experimental approach has distinct advantages, espe-
cially on modern scanning transmission electron microscopes, where
probes well below 1 nm in diameter can be routinely produced, provid-
ed the diffraction patterns can be acquired reasonably quickly (which is
now possible due to advances in imaging detectors).

Atomistic models have shown that the variance displays clear trends
as a function of the size and volume fraction of the ordered regions [19,
20] and, to date, the technique has been employed to show variation in
the nanoscale order of amorphous silicon [21-26] and amorphous ger-
manium [16, 18, 27] thin films, phase change chalcogenide materials
[28-30], and a selection of amorphous metals [31, 32]. In these experi-
ments, qualitative differences in FEM variance were observed and attrib-
uted to fundamental physical phenomena such as differences in film
deposition condition [23], the existence and thermal ripening of subcrit-
ical nuclei that precede crystallisation [29, 30], and the effect of alloying
on crystallisation kinetics [33]. Quantitative FEM analysis has thus far
proven challenging, but with recent developments such as variable reso-
lution FEM, information about the extent of the nanometre-scale order-
ing can be extracted [26, 34]. Nevertheless, a number of recent studies
have been successful in relating the scattering covariance and angular
correlations in FEM data to structural information [13, 35, 36].

In recent work, we used scanning nano-diffraction FEM to collect
data, in a similar way to that described by Voyles and Muller [16], and
demonstrated the existence of MRO in a-Ta,0s5 [37]. In the version of

FEM applied in the present work, we depart from the standard formal-
ism in Eq. (1), and by assuming noise-free kinematic coherent diffrac-
tion to be Gaussian distributed, compute the variance of standardised
correlation coefficients obtained from a normalised cross-correlation
of a Gaussian filter with the raw diffraction data,

Viy,k Q) = {(F(1(r.x,y,Q),0) = (¥(1(£,x.5,Q), )} . (2)

k

where v, the correlation coefficient is obtained from:
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In Eq. (3), tis the Gaussian filter, {...) indicates averaging over r,and I
is as in Eq. (1) with the exception that here the variance is computed on
a pixel by pixel basis (x, y) through the diffraction pattern stack
resulting in a variance map which is thereafter azimuthally averaged
(represented by {...}i) to obtain the variance as a function of scattering
vector k. Eq. (2) is a standard expression for variance which can be
found in any statistical reference manual and is easily recognised by
the mnemonic “mean of the square minus square of the mean”; it differs
in form from Eq. (1) by the change of variable and the normalisation fac-
tor in the denominator; we normalise our data through Eq. (2) prior to
computing the variance. Whilst the Gaussian filtering was initially
intended to mitigate noise, it became apparent that a change of variable
in the variance calculations from intensity to a normalised score of the
intensities structural significance simultaneously removed noise, back-
ground and standardised the datasets. In Eq. (3), I(x,y) denotes the in-
tensity value of the diffraction pattern at the point (x,y), I, is the
mean value of I(x,y) within the area of the Gaussian filter t at the
point (x,y), and ¢ is the mean value of the Gaussian filter. The denomi-
nator in Eq. (3) contains the variance of the zero mean diffraction pat-
tern function I(x,y)—I, and the zero mean Gaussian filter function
t—t at the point (x,y). The 2-D normalised cross correlation is used
here as a standardised means to evaluate the significance of the raw
diffracted intensity at each point in the diffraction pattern, and is scored
upon the similarity of the local distribution of intensity around each
point to our model diffraction maxima centred on that point. Our
model diffraction maximum is a 7 x 7 pixel rotationally symmetric nor-
malised Gaussian filter with a two pixel standard deviation, obtained by
fitting a 2-D Gaussian function to a sharp Bragg spot in a diffraction pat-
tern from the same sample series, which had crystallised after a 800 °C
heat treatment. Using this approach, the absolute magnitude of the
scattered intensity is irrelevant and instead, it is the shape of the inten-
sity distribution around each pixel that becomes relevant, allowing co-
herent diffraction with poor SNR to emerge from the background. The
resulting normalised correlation map is then a standardised transform
of the diffraction pattern into a map of the diffracted intensity's struc-
tural significance, where scores range in value between — 1 (maximally
anti-correlated), zero (uncorrelated) and 1 (maximally correlated).
Only positive scores are deemed structurally significant as we assume
coherent diffraction to be approximately Gaussian, whereas the diffuse
background and single pixel events are not Gaussian distributed. We
thus remove the negatively scored intensity contributions from calcula-
tions which anti-correlate with our model Gaussian filter, and we as-
sume that much of the noise and diffuse background in the system
will result in this negative range of scored intensities. As a result of
this normalisation, y(x,y) is invariant to brightness or contrast varia-
tions in the diffraction patterns (including from diffuse inelastic scatter-
ing), which are related to the values of the mean and the standard
deviation; this has the effect of standardisation of the data-sets and
preservation of real diffraction spots deemed structurally significant
through positive correlation, whilst rejecting single pixel noise or X-
ray events. Intuitively, this approach seems well suited to the study of
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structural change due to thermal annealing; each diffraction pattern
across the sample series is rendered statistically equivalent by the trans-
formation of raw intensity pixel values to a normalised correlation coef-
ficient which itself is determined by the similarity of that pixel and its
surrounding area (size of the filter) to the Gaussian filter centred on
that pixel. As the Gaussian filter is a representation of diffraction maxi-
ma from the specimen that has attained long range order by thermal an-
nealing at 800 °C, it serves as a reference in which the distribution of
diffracted intensity in the remaining thermal annealing series, which
have not attained that level of order, can be meaningfully compared
using the relative values of the assigned correlation coefficients, which
describe the degree structural significance that the raw intensity values
contribute to the diffraction pattern. Inspired by methods used in image
analysis for feature tracking, this approach renders the data invariant to
inconsistencies in the illumination conditions during data acquisition
[38], and removes the need to normalise after the variance is computed.
It has also been shown that reliable extraction of information using the
formal FEM technique is highly dependent upon the quality and repro-
ducibility of the experimental data, and as such, steps have been laid out
to accurately identify and correct artefacts in affected datasets [39]
which we review in relation to our data.

Early work in scanned diffraction used a very small number of dif-
fraction patterns and was very slow to collect [ 18] due to the limitations
of the imaging detectors available at the time. More recently, rapid ad-
vances were made in high speed acquisition of scanned diffraction
data using an optically coupled camera [40-42]. Whilst these advances
were principally made with precession electron diffraction in mind [41],
spatial resolution can be increased by deactivating the precession and
this is then ideal for application in FEM with a resolution of ~1 nm, al-
though the noise in the system requires some special treatment, as de-
scribed below. Future work will be further aided by the use of a new
generation of direct electron detectors that allow high frame rate collec-
tion (~1 kHz) with almost perfect quantum efficiency [43-45].

In addition to the classic variance-based analysis of the scanned dif-
fraction data [18], it is also possible to image features of the scanned dif-
fraction dataset in real space due to the spatially indexed nature of the
diffraction pattern collection which we discuss further in Section 3.2.
Using the Virtual Dark-Field Imaging (VDFi) approach of Rauch and
Véron, real space images are formed from the indexed scanned diffrac-
tion dataset by using the intensity in selected parts of each diffraction
pattern [46]. This is a counterpart to classic dark field imaging, where
images are formed using only selected scattered electrons instead of
the undiffracted central spot, and this is realised by the insertion of a
physical aperture in the back focal plane of the objective lens. This has
the effect of masking almost all the diffraction pattern, except the one
reflection which is visible through the aperture. For the VDFi construc-
tion [47], the whole back focal plane is collected with a spatially re-
solved detector and later numerically reconstructed to rebuild real
space representations of the materials, using any desired combination
of integrated intensity (unlimited combinations of numerical apertures
can be employed) out of the diffraction patterns, in order to create the
pixel values of the reconstructed real-space images. This has one clear
advantage over conventional dark field imaging: the whole back focal
plane is collected allowing any number of different dark field images
to be reconstructed afterwards, whereas conventional dark field imag-
ing has just one reflection selected per image. Of course, this comes
with a downside that a vast quantity of data needs to be collected to
map any reasonable scan area at a sensible spatial resolution, when
only a tiny fraction of the data is used in the production of each VDFi
image. Thus far the technique has been used to spatially map phases
and orientations of polycrystalline materials [46, 48]; here we extend
the concept of FEM to map the evolution of medium range order and
nano-crystallite nucleation in glasses as a function of thermal annealing,
effectively spatially resolving the FEM results. Instead of a two dimen-
sional plot of variance as a function of scattered intensity I(k), we can
now visualise the entire dataset simultaneously as a spatially resolved

variance map at a given scattering vector (or indeed using any part of
the scattered beam). This is similar to FEM using dark-field imaging, in
which the intensity is collected in the form of real space images,
which have one scattering vector k, one probe size Q, and many spatial
samples r, k and Q get changed, and the next image is acquired. On the
contrary, in our method of STEM nano-diffraction, I (r, k, Q) is obtained
in the form of an electron diffraction pattern acquired with a
nanometre-sized probe, which has one Q, one r, and many k values.
That probe is then rastered across the sample to acquire many r [49].
VDFi therefore enables FEM data acquired via scanned diffraction to
be quantified in new ways, by combining the real space and reciprocal
space representations in one analysis. This combined approach is used
in the present work to probe the changes in amorphous Ta,0s films
on thermal annealing.

2. Experimental
2.1. Samples/annealing process/specimen preparation

The amorphous IBS tantala coatings were manufactured by the Com-
monwealth Scientific and Industrial Research Organisation (CSIRO, Mate-
rials Science and Engineering Division, West Lindfield, NSW, Australia).
The coatings were deposited onto fused silica substrates and were subject
to post-deposition annealing at 300 °C, 400 °C and 600 °C for 24 h in air.
Specimens were prepared for the scanning electron diffraction studies
using a standard cross section method of gluing two sections of film
face to face, encapsulation in a brass tube with epoxy resin, slicing,
polishing and dimpling. The samples were then thinned to electron trans-
parency using a Gatan Precision lon Polishing System (PIPS) (Gatan Inc.,
Pleasanton, CA, (USA), which used Ar + ion irradiation at a relatively
low energy, 4 kV beam, and a final 0.5 kV polishing stage, to avoid any
changes to the sample material structure.

2.2. Data collection and reduction

The electron diffraction data were collected on a JEOL JEM2100F op-
erating at 200 keV at the University of Grenoble. The microscope was set
to nano-beam mode in TEM, encapsulating diffraction from a volume
set by the beam diameter, 2 nm FWHM in this work, with a dedicated
hardware solution made by NanoMEGAS which controlled the deflec-
tion coils of the TEM allowing it to be operated in a ~2 mrad low conver-
gence angle STEM mode [40, 42, 50]. Although we did not measure the
probe current absolutely, it was kept low enough that there was no
speckle movement under the stationary beam, which indicates that
there is no modification of the atomic structure of the sample by the
beam. The diffraction patterns were recorded using an external video
camera imaging the TEM phosphorous screen with a dynamic range of
8 bits, at a rate of 100 patterns per second over the area of interest. All
diffraction patterns were linear unsaturated measurements of the
diffracted intensity.

At this probe resolution of ~2 nm, the resulting diffraction patterns
from amorphous tantala take the form of speckly distributions of
diffracted intensity as depicted in Fig. 1(a), as is typical of such FEM ex-
periments, as opposed to the diffuse rings that are conventionally asso-
ciated with diffraction from larger volumes of amorphous materials
seen in Fig. 1(b) (recorded with an exposure time an order of magnitude
greater than that of Fig. 1(a), from a volume five orders of magnitude
larger). Of course, simply adding up many speckle patterns from differ-
ent regions would produce a pattern like Fig. 1(b). Whilst the authors
are aware of methods that explicitly investigate the length scale of
MRO using a range of probe sizes [12], these were not explicitly used
in this work, and the 2 nm probe size was found to optimal for FEM
studies on this sample with this microscope.

The optical coupling in this work, whilst advantageous for rapid data
acquisition in low convergence angle STEM mode, has the undesired ef-
fect of introducing artefacts and noise into the data. This includes
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Fig. 1. (a) Typical tantala FEM diffraction pattern using 2 nm probe FWHM, (b) typical tantala diffraction pattern using 50 nm probe FWHM, recorded on a CCD.

artefacts such as spurious X-rays impinging on the phosphor screen, as
well as significant electronic noise in the camera. Methods investigated
to reduce these, as well as other sources of noise led to the development
of the version of FEM used in this work. Fig. 2 shows an example of a
typical diffraction pattern used here for analysis, before and after the
data reduction process.

Although the general purpose of the 2D normalised cross correlation
is for the determination of the position of a feature within an image
using template matching, all of the features of interest in the diffraction
pattern bear similarity to our chosen template. Thus the result is not a
correlation map of the likeliest position of a feature, but a correlation
map of the similarity of regions of the diffraction pattern to the Gaussian
filter. Although the variance Egs. (1) and (2) are not mathematically
equivalent, they both provide a dimensionless value for the variance
which are directly related to the structural heterogeneity of the samples.
Therefore, we compute the variance of the correlation coefficients of the
diffracted intensity with a 2-D Gaussian as opposed to the directly detect-
ed intensity values, and use them as a proxy for the scattered intensity by
approximating the two dimensional distribution of intensity to be Gauss-
ian in nature for individual diffraction maxima. The use of a constant
Gaussian filter throughout the whole data series is key in obtaining
meaningful comparison of the standardised data sets of the Ta,05 heat
treatment series, and serves as the model which is used to select structur-
ally significant regions of diffracted intensity for calculations.

Lietal. [39] provided a basis upon which FEM can be performed with
confidence in the quantitative magnitude of the data, which entails the

identification and removal of common artefacts in the dataset. We ex-
amine these noise sources here in relation to our data.

The datasets used in this work were from conventionally prepared
cross sectional samples which contained some thickness variations,
although care was taken to choose areas for analysis which were ex-
tremely thin and with very small thickness variations. The conse-
quence was that no saw-tooth pattern was visible in a plot of I(k)
versus pattern number at high k before or after data reduction
(which would indicate a large thickness change). No voids were
identified, neither were any roughness effects. A small amount of
carbon contamination was visible in the raw data in a plot of I(k) ver-
sus pattern number at high k, although after data reduction the effect
vanished. Furthermore, no multiple scattering effects or large
nanocrystals were observed.

Additionally, we observed no noticeable dependence of the variance
upon the specimen thickness, which was determined by plotting the
main variance peaks of 56 FEM signals (100 diffraction patterns each),
from parallel lines normal to the small thickness gradient in the dataset,
for both the 300 °C and 600 °C data sets. These results confirm that any
differences in the volumes of the samples studied were inconsequential
to our analysis [39]. The 400 °C data was sampled from areas similar to
the 300 °C and 600 °C data sets and underwent identical sample prepa-
ration, indicating minimal thickness variation within each sample and
from sample to sample. The usual FEM signal is also somewhat sensitive
to probe coherence; however using a small semi-convergence angle,
and by performing calculations only where scattered intensities have

Fig. 2. (a) Raw diffraction pattern, (b) diffraction pattern cross correlated with normalised Gaussian filter, retaining only positive correlations. The central beam has been removed for

clearer comparison of features.
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been determined to be structurally significant, as opposed to the total
scattered intensity, this sensitivity is reduced.

3. Analysis and results
3.1. Fluctuation Electron Microscopy (FEM)

Fig. 3 shows the results of the average variance of five data sets, each
using 1000 diffraction patterns, computed for the 300 °C, 400 °C and
600 °C samples, with the error bars showing the standard deviation of
the variance computed over the five data sets. These datasets simulta-
neously confirm the presence of MRO and of a change in short range
atomic structure, both as a consequence of thermal annealing.

As mentioned previously, the atomic structure of these coatings
annealed up to 600 °C appears homogeneous when probed with a
beam of >50 nm diameter as a function of scattering vector and position
on the sample; so unlike the peaks in Fig. 3, a variance plot at that reso-
lution would appear relatively flat and give no hint to any underlying
medium range order. Here, probing the structures with a 2 nm diameter
probe over thousands of areas of the samples, and obtaining these var-
iance peaks, confirms the heterogeneity of the atomic structure over
these length scales. There is always a trade-off between spatial resolu-
tion and averaging when selecting a probe size and this technique is ef-
fectual only when the probe is sufficiently small that averaging of the
volume does not remove resolution in reciprocal space of the diffracted
intensity. The 2 nm probe here was selected qualitatively based upon
the prominence and contrast of the observed variation in diffracted in-
tensity at different positions on the sample. And whilst a different
level of heterogeneity can be observed using different probe sizes, it
has been shown that there exists a peak in the heterogeneity of the
structure that coincides with the maximum variance, and is observed
when the probe size is of comparable dimension to the characteristic
length scale of the order within the material [12]. Gibson et al. devel-
oped a technique which can quantitatively determine this characteristic
length scale using different probe sizes [12] which we plan to use in fu-
ture studies.

At this scale, the change in atomic structure due to thermal anneal-
ing is apparent; the magnitude of the 600 °C variance is significantly
larger than that of the 300 °C and 400 °C data, indicating further devia-
tion from homogeneity that can be explained in terms of the structure
beginning to organise itself into regions of greater order. This seems to
correlate with mechanical loss measurements of the same materials
which show no significant difference between the 300 °C and 400 °C
coatings, but shows significant changes between those and the 600 °C
coating [7].

3.2. Virtual Dark-Field Imaging

The concept behind the Virtual Dark-Field Imaging (VDFi) technique
is shown in Fig. 4. Each of the circles represents a diffraction pattern
whose resolution Q is dictated by the size of the incident electron
probe (2 nm FWHM), rastered across the sample surface. Each of the
1.5 nm x 1.5 nm squares represent a pixel of the reconstructed VDFi
image and are the step size in which the electron beam is rastered.
The intensity of each pixel is the integrated intensity of any part of the
diffraction pattern selected. Fig. 4(a) shows the selection of a line seg-
ment containing three Bragg reflections; integrating the resultant inten-
sity from the same location in each diffraction pattern, we obtain an
image highlighting the persistence of that structural motif in such a vol-
ume over a user defined area. Likewise shown in Fig. 4(b), (c) and (d),
any numerical aperture or combination thereof, can be created to enable
investigation of the persistence of such nanoscale order over any de-
sired area.

Fig. 5 shows an example of VDFi images of the 300 °C, 400 °C and
600 °C samples created using a virtual annular aperture such as in
Fig. 4(c), integrated over the scattering vectors between 0.287 A~!
and 0.300 A~ . The effect of this range selection is to visualise the FEM
data in real space where the amorphous structure is furthest from ho-
mogeneity, which in this case predominantly describes the heterogene-
ity of the tantalum-tantalum nearest neighbour environment. Setting
the angular range for VDFi at some other point where the variance is
less will show less in the way of interesting structure. It is important
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seen as a function of heat-treatment.
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Fig. 4. Schematic of the Virtual Dark-Field Imaging process. Circles represent a diffraction pattern from a nano-volume, squares represent pixels in the VDFi image. Examples of virtual

apertures (a) line segment, (b) beam spots, (c) annuli, (d) sector.

to note that these VDFi images were constructed using the same data
sets that were used in the FEM analysis, and are thus consistent with
the FEM results and investigate the spatial persistence of fragments re-
sponsible for medium range ordering.

As intimated before, these virtual images can be constructed from the
integrated intensity of annuli at all scattering vectors and allow the differ-
ent changes in structure due to thermal annealing to be charted as a func-
tion of such. The results of the Gaussian functions fits to the histograms of
intensity distributions of the virtual images shown in Fig. 5 complement
that of the FEM study. As heat treatment temperature increases, the
mean intensity of the main diffraction peaks increases, with the relative
incidence of higher diffracting centres decreasing as would be expected
with certain areas becoming more ordered. In this instance we still retain
the spatial variance of the diffracted intensity at that scattering vector and
in each VDFi image the groupings of red pixels indicate areas of the
greatest diffracted intensity, corresponding to the highest degree of struc-
tural ordering. In all of these VDFi images, clusters of red pixels are found.
Whilst many of the clusters are just 2 pixels wide (about 3 nm), some are
as large as 4 pixels across, suggesting patches of order to greater than
5 nm in places.

The results of Fig. 5(a, b, ¢) (where pixel colours represent the range
of integrated intensity and have a one to one correspondence in each of
the VDFi images) are quantified in Fig. 5(d), which is a plot of the fre-
quency of occurrence versus mean intensity. Whilst Fig. 5(a) and
(b) for the 300 °C and 400 °C annealed materials show a rather similar
frequency distribution, as would be expected from their very similar
variance plots in Figs. 3, 5(c) shows that the peak of the distribution is
moved to higher intensities, although with a lower height. This is fully
in accord with the changes in variance observed at the same scattering
vector in Fig. 3, and demonstrates an increased ordering after annealing
at 600 °C into fewer, larger ordered regions.

4. Discussion

We note that the mechanical loss of these coatings at low tempera-
tures increase with increasing heat treatment [7], and thus it seems
plausible that the reason may be related to degree of medium range
order. Moreover, the shift of the distributions in Fig. 5(d), due to thermal
annealing, very closely resembles the shift of the mechanical loss peaks
measured for these same samples [7] and will be investigated further to
ascertain if any correlations of the mechanical loss with the presence of
nano-crystallites are found. Recent work by Treacy and Borisenko on
the local structure of amorphous silicon found para-crystalline struc-
tures containing local cubic ordering at the 10 to 20 A length scale
[12]. Similarly, our results suggest that the structure of amorphous
tantala can be better described by a phase separated heterogeneous
model than the continuously uniform random network model of
Zachariasen [51]. Other studies have shown favour to this same nano-
crystalline theory of glass [52-54]. Although similar results to the
study in [54] initially have been interpreted in terms of Zachariasen's
continuous random network model [55], further studies revealed the
presence of nanoscale ordering [56].

It is important to consider the connection between the structural
trends highlighted as a consequence of annealing in this work, and the
trends in mechanical loss with annealing for the same materials. It is
found that increased annealing temperature to 600 °C reduces the
room-temperature mechanical loss, making the use of 600 °C annealing
advantageous for mirrors designed for use at room temperature [7]
(such as Advanced LIGO). At the same time, this 600 °C annealing causes
the appearance of a significant and well-localised peak in loss at around
20 K, making this annealing possibly less suited for the preparation of
coatings for use in cryogenic detectors [7], such as Kagra, currently
under construction in Japan [57], and the proposed Einstein Telescope
[9]. It may be suggested that the increased ordering affects the number
and energetics of defects forming double well potentials at boundaries
between paracrystallites. These defects appear to have relatively low
energy barrier between two metastable states, reducing the overall
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losses at elevated temperatures whilst increasing the losses at lower
temperatures, similarly to the mechanical loss mechanism proposed
for amorphous silica [58].

Future work will further explore the proposed VDFi approach in con-
junction with FEM to look for the evolution of structural motifs that cor-
relate with the measured mechanical loss of these coatings resulting
from alloying and thermal annealing. It is also planned to perform im-
proved versions of this experiment using the JEOL ARM200F at the Uni-
versity of Glasgow, imaging onto a Medipix III, electron-counting direct
electron detector [43-45], in order to study the medium range order in
titania-doped tantala.

5. Summary

We have shown using FEM and VDFi that medium range order exists
in lon Beam Sputtered amorphous tantala thin film mirror coatings on
the length scale of 1.5-6 nm (from min/max cluster sizes in VDFi
data), and that said order increases with increasing levels of thermal an-
nealing, showing definitively for the first time that changes in the medi-
um range ordering of the atomic structure of amorphous tantala result
from thermal annealing. It is moreover demonstrated that Virtual

Dark-Field Imaging is a valuable spatially resolvable FEM technique for
the study of the evolution of local ordering in glasses due to thermal an-
nealing. It seems that the increased medium range order with annealing
to 600 °Cis correlated with both the reduction in room temperature me-
chanical loss and the increase in low temperature loss around 20 K, and
a tentative model for the mechanism underlying this correlation has
been proposed.
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