6 research outputs found

    Bilayer-induced asymmetric quantum Hall effect in epitaxial graphene

    Get PDF
    The transport properties of epitaxial graphene on SiC(0001) at quantizing magnetic fields are investigated. Devices patterned perpendicularly to SiC terraces clearly exhibit bilayer inclusions distributed along the substrate step edges. We show that the transport properties in the quantum Hall regime are heavily affected by the presence of bilayer inclusions, and observe a significant departure from the conventional quantum Hall characteristics. In particular, we observe anomalous values of the quantized resistance and a peculiar asymmetry with magnetic field which was not observed before for graphene on SiC. A quantitative model involving enhanced inter-channel scattering mediated by the presence of bilayer inclusions is presented that successfully explains the observed symmetry properties

    Tuning of quantum interference in top-gated graphene on SiC

    No full text
    We report on quantum-interference measurements in top-gated Hall bars of monolayer graphene epitaxially grown on the Si face of SiC, in which the transition from negative to positive magnetoresistance was achieved varying temperature and charge density. We perform a systematic study of the quantum corrections to the magnetoresistance due to quantum interference of quasiparticles and electron-electron interaction. We analyze the contribution of the different scattering mechanisms affecting the magnetotransport in the 2.0×10^10 cm−2 to 3.75×10^11 cm−2 density region and find a significant influence of the charge density on the intravalley scattering time. Furthermore, we observe a modulation of the electron-electron interaction with charge density not accounted for by present theory. Our results clarify the role of quantum transport in SiC-based devices, which will be relevant in the development of a graphene-based technology for coherent electronics

    Scanning gate imaging of quantum point contacts and the origin of the 0.7 anomaly

    No full text
    The origin of the anomalous transport feature appearing at a conductance G approximate to 0.7 x (2e(2)/h) in quasi-1D ballistic devices-the so-called 0.7 anomaly-represents a long standing puzzle. Several mechanisms have been proposed to explain it, but a general consensus has not been achieved. Proposed explanations have been based on quantum interference, the Kondo effect, Wigner crystallization, and other phenomena. A key open issue is whether the point defects that can occur in these low-dimensional devices are the physical cause behind this conductance anomaly. Here we adopt a scanning gate microscopy technique to map individual impurity positions in several quasi-1D constrictions and correlate these with conductance characteristics. Our data demonstrate that the 0.7 anomaly can be observed irrespective of the presence of localized defects, and we conclude that the 0.7 anomaly is a fundamental property of low-dimensional systems
    corecore