137 research outputs found

    Accelerated cardiac aging in patients with congenital heart disease

    Get PDF
    An increasing number of patients with congenital heart disease (CHD) survive into adulthood but develop long-term complications including heart failure (HF). Cellular senescence, classically defined as stable cell cycle arrest, is implicated in biological processes such as embryogenesis, wound healing, and aging. Senescent cells have a complex senescence-associated secretory phenotype (SASP), involving a range of pro-inflammatory factors with important paracrine and autocrine effects on cell and tissue biology. While senescence has been mainly considered as a cause of diseases in the adulthood, it may be also implicated in some of the poor outcomes seen in patients with complex CHD. We propose that patients with CHD suffer from multiple repeated stress from an early stage of the life, which wear out homeostatic mechanisms and cause premature cardiac aging, with this term referring to the time-related irreversible deterioration of the organ physiological functions and integrity. In this review article, we gathered evidence from the literature indicating that growing up with CHD leads to abnormal inflammatory response, loss of proteostasis, and precocious age in cardiac cells. Novel research on this topic may inspire new therapies preventing HF in adult CHD patients

    Modulation of mitochondrial capacity and angiogenesis by red wine polyphenols via estrogen receptor, NADPH oxidase and nitric oxide synthase pathways.

    Get PDF
    Red wine polyphenolic compounds (RWPC) are reported to exert vasculoprotective properties on endothelial cells, involving nitric oxide (NO) release via a redox-sensitive pathway. This NO release involves the activation of the estrogen receptor-alpha (ERα). Paradoxical effects of a RWPC treatment occur in a rat model of post-ischemic neovascularization, where a low-dose is pro-angiogenic while a higher dose is anti-angiogenic. NO and ERα are key regulators of mitochondrial capacity, and angiogenesis is a highly energetic process associated with mitochondrial biogenesis. However, whether RWPC induces changes in mitochondrial capacity has never been addressed. We investigated the effects of RWPC at low (10(-4)g/l, LCP) and high concentration (10(-2)g/l, HCP) in human endothelial cells. Mitochondrial respiration, expression of mitochondrial biogenesis factors and mitochondrial DNA content were assessed using oxygraphy and quantitative PCR respectively. In vitro capillary formation using ECM gel(Ÿ) was also performed. Treatment with LCP increased mitochondrial respiration, with a maximal effect achieved at 48h. LCP also increased expression of several mitochondrial biogenesis factors and mitochondrial DNA content. In contrast, HCP did not affect these parameters. Furthermore, LCP modulated both mitochondrial capacity and angiogenesis through mechanisms sensitive to ER, NADPH oxidase and NO-synthase inhibitors. Finally, the inhibition of mitochondrial protein synthesis abolished the pro-angiogenic capacity of LCP. These results suggest a possible association between the modulation of mitochondrial capacity by LCP and its pro-angiogenic activity. These data provide evidence for a role of mitochondria in the regulation of angiogenesis by RWPC

    Role of the mitochondria on the paradoxical effect of red wine polyphenols on angiogenesis

    Get PDF
    Red wine polyphenol (RWPC) extracts has been reported to possess vasoprotective properties that involve nitric oxide (NO) release from endothelial cells via a redox- sensitive pathway. Besides, the molecular target of RWPC to release NO has been recently revealed and it involves the activation of the estrogen receptor alpha (ERα). Paradoxical effects of RWPC have been shown with regard to angiogenesis. Indeed in a rat model of postischemic neovascularization, low- dose is pro-  whereas high dose is anti- angiogenic. NO and ERα  are key regulators of mitochondrial function. Furthermore, angiogenesis is a highly energetic process associated with mitochondrial biogenesis. However, whether RWPC induces changes in mitochondrial function has never been addressed and it is the aim of this study. The effects of RWPC at low concentration (10- 4 g/l, LCP) and high concentration (10- 2 g/l, HCP) after 48 hours time exposure were investigated on human endothelial cells. Mitochondrial respiration, expression of biogenesis factors and DNA content was assessed using oxygraphy and qRT- PCR, respectively. In vitro capillary formation using MatrigelŸ was performed. The mechanism involved with respect to ER using the ER- antagonist fulvestrant was studied. The involvement of both NADPH oxidase and NO synthase was addressed using apocynin and L- NA respectively. LCP, but not HCP, increased mitochondrial respiration. The effect of LCP was associated with an increase of both expression of several mitochondrial biogenesis factors (NRF- 1, NRF- 2, ERRα, Tfam, PolG) and mitochondrial DNA content whereas HCP had no effect on these parameters. All the effects of LCP on mitochondrial respiration are prevented by fulvestrant, apocynin and L- NA. LCP also promoted in vitro capillary elongation that was prevented by fulvestrant, apocynin and L- NA. Finally, the inhibition of mitochondrial protein synthesis using chloramphenicol suppressed the pro- angiogenic property of LCP. The present study highlights the implication of the axis ER, NADPH oxidase and NOS pathways on both increase mitochondrial function and capillary elongation in response to RWPC at low concentration. They explain the paradoxical effect of RWPC depending on the concentration with respect to angiogenesis, mitochondria being key targets for its pro- angiogenic properties

    Bridging Pharmaceutical Chemistry with Drug and Nanoparticle Targeting to Investigate the Role of the 18-kDa Translocator Protein TSPO.

    Get PDF
    An interesting mitochondrial biomarker is the 18‐kDa mitochondrial translocator protein (TSPO). Decades of study have shown that this protein plays an important role in a wide range of cellular functions, including opening of the mitochondrial permeability transition pore as well as programmed cell death and proliferation. Variations in TSPO expression have been correlated to different diseases, from tumors to endocrine and neurological disorders. TSPO has therefore become an appealing target for both early diagnosis and selective mitochondrial drug delivery. The number of structurally different TSPO ligands examined has increased over time, highlighting the scientific communityâ€Čs growing understanding of the roles of TSPO in normal and pathological conditions. However, only few TSPO ligands are characterized by the presence of groups that are potentially derivatizable; therefore only few such ligands are well suited for the preparation of targeted prodrugs or nanocarriers able to deliver therapeutics and/or diagnostic agents to mitochondria. This review provides an overview of the very few examples of drug delivery systems characterized by moieties that target TSPO

    Effects of delphinidin on mitochondrial function in endothelial cells

    Get PDF
    Delphinidine (delph), an anthocyanin with the same pharmacological proÂż le than the total extract of red wine polyphenol, induces vasodilatation and possess anti-apoptotic property in endothelial cells (ECs) by mechanism involving nitric oxide (NO). The later can regulate mitochondrial (mt) function. However, the link between NO, mitochondria and the upstream target of delph including the alpha isoform of the estrogen receptor (ERa) has never been assessed and is the aim of the present study. For this purpose, the effects of delph (3.10-5 M) and the ERa agonist propylpyrazole triol (PPT, 10-5 M) were conducted at two time points, 10min and 48h, on mt respiration (R) by oxygraphy and on respi- ratory chain complexes activities by spectrophotometry in Eahy926 ECs. NO production was assessed by electron paramagnetic resonance at the early time. These experiments were performed with or without the ER antagonist, fulves- trant (fulv, 3.10-5 M), or the NO synthase inhibitor, L-nitro-arginine (L-NA, 10-4 M). As expected, delph and PPT induced an early increase of NO that was prevented by fulv. Delph time-dependently increased basal R and maximal R capacity but not the non-phosphorylative R by a mechanism insensitive to fulv but sensitive to L-NA. PPT did not affect basal and non-phosphorylative R but increased the maximal R capacity by a mechanism sensitive to fulv and L-NA. These effects were associated with increased cytochrome c oxidase acti- vity. These data highlight the implication of both NO and cytochrome c oxidase activity on the modulation of mt R in response to delph and PPT in ECs. The lack of effect of ER blockade on the increase of mt R by delph supports the involvement of ER-independent mechanism although this receptor is implicated at the early increase of NO production. Thus, this study suggests a probable role of mitochondria in the effect of polyphenol in the regulation of endothelial func- tion including vasodilatation and endothelial integrity

    New oxaliplatin-pyrophosphato analogs with improved in vitro cytotoxicity

    Get PDF
    Two new Pt(II)-pyrophosphato complexes containing the carrier ligands cis-1,3- diaminocyclohexane (cis-1,3-DACH) and trans-1,2-diamine-4-cyclohexene (1,2-DACHEX), variants of the 1R,2R-diaminocyclohexane ligand present in the clinically used Pt-drug oxaliplatin, have been synthesized with the aim of developing new potential antitumor drugs with high bone tropism. The complexes are more stable at physiological pH than in acid conditions, with Na2[Pt(pyrophosphato)(cis-1,3-DACH)] (1) slightly more stable than Pt(dihydrogenpyrophosphato)(1,2-DACHEX)] (2). The greater reactivity at acidic pH ensures a greater efficacy at the tumor site. Preliminary NMR studies indicate that 1 and 2 react slowly with 5’-GMP (used as a model of nucleic acids), releasing the pyrophosphate ligand and affording the bis 5’-GMP adduct. In vitro cytotoxicity assays performed against a panel of four human cancer cell lines have shown that both compounds are more active than oxaliplatin. Flow cytometry studies on HCT116 cells showed that the pyrophosphato compounds with the non-classical 1,3- and 1,4- diaminocyclohexane ligands (1 and 4) are the most capable to induce cells’ death by apoptosis and necrosis

    Changes in contractile protein expression are linked to ventricular stiffness in infants with pulmonary hypertension or right ventricular hypertrophy due to congenital heart disease

    Get PDF
    Background The right ventricle (RV) is not designed to sustain high pressure leading to failure. There are no current medications to help RV contraction, so further information is required on adaption of the RV to such hypertension. Methods The Right Ventricle in Children (RVENCH) study assessed infants with congenital heart disease undergoing cardiac surgery with hypertensive RV. Clinical and echocardiographic data were recorded, and samples of RV were taken from matched infants, analysed for proteomics and compared between pathologies and with clinical and echocardiographic outcome data. Results Those with tetralogy of Fallot (TOF) were significantly more cyanosed than those with ventricular septal defect (median oxygen saturation 83% vs 98%, P=0.0038), had significantly stiffer RV (tricuspid E wave/A wave ratio 1.95 vs 0.84, P=0.009) and had most had restrictive physiology. Gene ontology in TOF, with enrichment analysis, demonstrated significant increase in proteins of contractile mechanisms and those of calmodulin, actin binding and others associated with contractility than inventricular septal defect. Structural proteins were also found to be higher in association with sarcomeric function: Z-disc, M-Band and thin-filament proteins. Remaining proteins associated with actin binding, calcium signalling and myocyte cytoskeletal development. Phosphopeptide enrichment led to higher levels of calcium signalling proteins in TOF. Conclusion This is the first demonstration that those with an RV, which is stiff and hypertensive in TOF, have a range of altered proteins, often in calcium signalling pathways. Information about these alterations might guide treatment options both in terms of individualised therapy or inotropic support for the Right ventricle when hypertensive due to pulmoanry hypertension or congenital heart disease

    Reconstruction of the swine pulmonary artery using a graft engineered with syngeneic cardiac pericytes

    Get PDF
    The neonatal heart represents an attractive source of regenerative cells. Here, we report the results of a randomized, controlled, investigator-blinded preclinical study, which assessed the safety and effectiveness of a matrix graft cellularized with cardiac pericytes (CPs) in a piglet model of pulmonary artery (PA) reconstruction. Within each of five trios formed by 4-week-old female littermate piglets, one element (the donor) was sacrificed to provide a source of CPs, while the other two elements (the graft recipients) were allowed to reach the age of 10 weeks. During this time interval, culture-expanded donor CPs were seeded onto swine small intestinal submucosa (SIS) grafts, which were then shaped into conduits and conditioned in a flow bioreactor. Control unseeded SIS conduits were subjected to the same procedure. Then, recipient piglets were randomized to surgical reconstruction of the left PA (LPA) with unseeded or CP-seeded SIS conduits. Doppler echocardiography and cardiac magnetic resonance imaging (CMRI) were performed at baseline and 4-months post-implantation. Vascular explants were examined using histology and immunohistochemistry. All animals completed the scheduled follow-up. No group difference was observed in baseline imaging data. The final Doppler assessment showed that the LPA’s blood flow velocity was similar in the treatment groups. CMRI revealed a mismatch in the average growth of the grafted LPA and contralateral branch in both treatment groups. Histology of explanted arteries demonstrated that the CP-seeded grafts had a thicker luminal cell layer, more intraparietal arterioles, and a higher expression of endothelial nitric oxide synthase (eNOS) compared with unseeded grafts. Moreover, the LPA stump adjacent to the seeded graft contained more elastin and less collagen than the unseeded control. Syngeneic CP engineering did not accomplish the primary goal of supporting the graft’s growth but was able to improve secondary outcomes, such as the luminal cellularization and intraparietal vascularization of the graft, and elastic remodeling of the recipient artery. The beneficial properties of neonatal CPs may be considered in future bioengineering applications aiming to reproduce the cellular composition of native arteries

    Hydroxy-propil-ÎČ-cyclodextrin inclusion complexes of two biphenylnicotinamide derivatives: Formulation and anti-proliferative activity evaluation in pancreatic cancer cell models

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with poor outcomes largely due to its unique microenvironment, which is responsible for the low response to drugs and drug-resistance phenomena. This clinical need led us to explore new therapeutic approaches for systemic PDAC treatment by the utilization of two newly synthesized biphenylnicotinamide derivatives, PTA73 and PTA34, with remarkable antitumor activity in an in vitro PDAC model. Given their poor water solubility, inclusion complexes of PTA34 and PTA73 in Hydroxy-Propil-ÎČ-Cyclodextrin (HP-ÎČ-CD) were prepared in solution and at the solid state. Complexation studies demonstrated that HP-ÎČ-CD is able to form stable host–guest inclusion complexes with PTA34 and PTA73, characterized by a 1:1 apparent formation constant of 503.9 M−1 and 369.2 M−1, respectively (also demonstrated by the Job plot), and by an increase in aqueous solubility of about 150 times (from 1.95 ”g/mL to 292.5 ”g/mL) and 106 times (from 7.16 ”g/mL to 762.5 ”g/mL), in the presence of 45% w/v of HP-ÎČ-CD, respectively. In vitro studies confirmed the high antitumor activity of the complexed PTA34 and PTA73 towards PDAC cells, the strong G2/M phase arrest followed by induction of apoptosis, and thus their eligibility for PDAC therapy
    • 

    corecore