5 research outputs found

    The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm

    Get PDF

    Alum: an old dog with new tricks

    No full text
    Aluminum compounds (alum) are the most widely used adjuvants in veterinary and human vaccines. Alum was initially thought to be a simple depot for antigen retention; however, our understanding of the mechanism by which it works has progressed substantially in recent decades. Nonetheless, consensus regarding its roles in different aspects of immune regulation has not been reached, and it remains a long-standing research subject in the field of vaccinology. This review, in chronological order, discusses the various hypotheses proposed in mostly inadequate attempts to illuminate the mechanism by which alum works, from the depot theory to the involvement of the NLRP3 inflammasome and from cell death-associated danger factors to crystalline structure-mediated plasma membrane alteration. In addition, novel findings of unexpected beneficial effects of decreased HBV (Hepatitis B virus) viral load and HBeAg seroconversion in chronically infected patients, as well as significant tumor suppression in experimental mice following multiple alum-only injections are examined, revealing alum's potential clinical applications beyond its use as a simple tool in antigen preparation. With increasing threats of emerging microbes, originating from natural or man-made sources, that pose significant health concerns at the population scale, the potential use of alum as a ‘first-aid' vaccine is also discussed

    Unraveling the enigma: elucidating the relationship between the physicochemical properties of aluminium-based adjuvants and their immunological mechanisms of action

    Get PDF
    Abstract Aluminium salts are by far the most commonly used adjuvants in vaccines. There are only two aluminium salts which are used in clinically-approved vaccines, Alhydrogel® and AdjuPhos®, while the novel aluminium adjuvant used in Gardasil® is a sulphated version of the latter. We have investigated the physicochemical properties of these two aluminium adjuvants and specifically in milieus approximating to both vaccine vehicles and the composition of injection sites. Additionally we have used a monocytic cell line to establish the relationship between their physicochemical properties and their internalisation and cytotoxicity. We emphasise that aluminium adjuvants used in clinically approved vaccines are chemically and biologically dissimilar with concomitantly potentially distinct roles in vaccine-related adverse events

    Unraveling the enigma: elucidating the relationship between the physicochemical properties of aluminium-based adjuvants and their immunological mechanisms of action

    No full text
    corecore