21 research outputs found

    Occurrence and ecological implication of a tropical anguillid eel, Anguilla marmorata, in Brunei Darussalam, Borneo Island

    Get PDF
    Tropical anguillid eels account for two-thirds of the 19 species in Anguilla Schrank, 1798. However, information on the species diversity, geographical distribution, and life histories of the tropical eels is very limited. Recent studies suggested that morphological species identification of the tropical anguillid eels should be validated by molecular analysis for accurate identification. After surveying for three years, two anguillid eels were found in Brunei Darussalam, Borneo Island. They were firstly identified as Anguilla marmorata Quoy & Gaimard, 1824 using morphological analysis and further gene analysis of cytochrome c oxidase subunit I (COI) confirmed the species identification. This study is the first comprehensive description of A. marmorata in Brunei Darussalam, Borneo Island. Furthermore, it is also the first study to validate two anguillid eels collected from the tropical Bonin Islands of Japan as A. marmorata by means of morphological and COI analyses. The molecular phylogenetic tree and haplotype network analyses suggest that A. marmorata found in Brunei Darussalam would belong to the North Pacific population of the westernmost distribution

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    One life ends, another begins: Management of a brain-dead pregnant mother - A systematic review -

    Get PDF
    Background: An accident or a catastrophic disease may occasionally lead to brain death (BD) during pregnancy. Management of brain-dead pregnant patients needs to follow special strategies to support the mother in a way that she can deliver a viable and healthy child and, whenever possible, also be an organ donor. This review discusses the management of brain-dead mothers and gives an overview of recommendations concerning the organ supporting therapy. Methods: To obtain information on brain-dead pregnant women, we performed a systematic review of Medline, EMBASE and the Cochrane Central Register of Controlled Trials (CENTRAL). The collected data included the age of the mother, the cause of brain death, maternal medical complications, gestational age at BD, duration of extended life support, gestational age at delivery, indication of delivery, neonatal outcome, organ donation of the mothers and patient and graft outcome. Results: In our search of the literature, we found 30 cases reported between1982 and 2010. A nontraumatic brain injury was the cause of BD in 26 of 30 mothers. The maternal mean age at the time of BD was 26.5 years. The mean gestational age at the time of BD and the mean gestational age at delivery were 22 and 29.5 weeks, respectively. Twelve viable infants were born and survived the neonatal period. Conclusion: The management of a brain-dead pregnant woman requires a multidisciplinary team which should follow available standards, guidelines and recommendations both for a nontraumatic therapy of the fetus and for an organ-preserving treatment of the potential donor
    corecore