29 research outputs found

    Pemetrexed disodium in recurrent locally advanced or metastatic squamous cell carcinoma of the head and neck

    Get PDF
    This phase II study determined response rate of patients with locally advanced or metastatic head and neck cancer treated with pemetrexed disodium, a new multitargeted antifolate that inhibits thymidylate synthase, dihydrofolate reductase and glycinamide ribonucleotide formyl transferase. 35 patients with local or metastatic relapse of squamous cell carcinoma of the head and neck (31 male, 4 female; median age 53 years) were treated with pemetrexed 500 mg m2 administered as a 10-minute infusion on day 1 of a 21-day cycle. Patients received 1 to 8 cycles of therapy. 9 patients (26.5%) had an objective response, with a median response duration of 5.6 months (range 2.9–20 months). 15 (44.1%) had stable disease, and 8 (23.5%) had progressive disease. 2 patients were not assessable for response. Median overall survival was 6.4 months (range 0.7–28.1 months; 95% CI: 3.9–7.7 months). 24 patients (68.6%) experienced grade 3/4 neutropenia, with febrile neutropenia in 4 (11.4%). Grade 3/4 anaemia and thrombocytopenia occurred in 11 (34.3%) and 6 (17.1%) patients, respectively. The most frequent non-haematological toxicity was grade 3/4 mucositis (17.1%; 6 patients). In conclusion, pemetrexed is active in squamous cell carcinoma of the head and neck. Although substantial haematological toxicities were experienced by patients, subsequent studies have shown that these toxicities can be proactively managed by folic acid and vitamin B12 supplementation. © 2001 Cancer Research Campaign http://www.bjcancer.co

    A multifactorial approach including tumoural epidermal growth factor receptor, p53, thymidylate synthase and dihydropyrimidine dehydrogenase to predict treatment outcome in head and neck cancer patients receiving 5-fluorouracil

    Get PDF
    The prognostic value of tumoural epidermal growth factor receptor (EGFR), p53, thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) was analysed on 82 advanced head and neck cancer patients (71 men, 11 women; mean age 59). Induction treatment was cisplatin–5-FU ± folinic acid (61 patients, Chem group) or concomitant cisplatin–5-FU–radiotherapy (21 patients, RChem group). EGFR (binding assay), p53 protein (Sangtec immunoluminometric assay), TS and DPD activities (radioenzymatic assays) were measured on biopsies obtained at time of diagnosis. Significant positive correlation was demonstrated between p53 and EGFR. In the RChem group, p53 was higher in non-complete responders (median 1.03 ng mg−1) than in complete responders (median 0.08 ng mg−1) (P = 0.057). Univariate Cox analyses stratified on treatment group showed that specific survival (33 events) was significantly related to T staging, p53 taken as continuous or categorial (below vs over 0.80 ng mg−1) variable, and EGFR (below vs over 220 fmol mg−1); survival increased when EGFR and p53 were below thresholds. Multivariate stepwise analysis including T staging, EGFR and p53 revealed that T staging and EGFR were independent predictors of survival; relative risks were 3.68 for T staging and 2.65 for EGFR. Overall, EGFR remained an independent prognostic factor when response to treatment and T staging were considered in the multivariate analysis. © 1999 Cancer Research Campaig

    Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles

    Get PDF
    Saliva is a readily accessible and informative biofluid, making it ideal for the early detection of a wide range of diseases including cardiovascular, renal, and autoimmune diseases, viral and bacterial infections and, importantly, cancers. Saliva-based diagnostics, particularly those based on metabolomics technology, are emerging and offer a promising clinical strategy, characterizing the association between salivary analytes and a particular disease. Here, we conducted a comprehensive metabolite analysis of saliva samples obtained from 215 individuals (69 oral, 18 pancreatic and 30 breast cancer patients, 11 periodontal disease patients and 87 healthy controls) using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). We identified 57 principal metabolites that can be used to accurately predict the probability of being affected by each individual disease. Although small but significant correlations were found between the known patient characteristics and the quantified metabolites, the profiles manifested relatively higher concentrations of most of the metabolites detected in all three cancers in comparison with those in people with periodontal disease and control subjects. This suggests that cancer-specific signatures are embedded in saliva metabolites. Multiple logistic regression models yielded high area under the receiver-operating characteristic curves (AUCs) to discriminate healthy controls from each disease. The AUCs were 0.865 for oral cancer, 0.973 for breast cancer, 0.993 for pancreatic cancer, and 0.969 for periodontal diseases. The accuracy of the models was also high, with cross-validation AUCs of 0.810, 0.881, 0.994, and 0.954, respectively. Quantitative information for these 57 metabolites and their combinations enable us to predict disease susceptibility. These metabolites are promising biomarkers for medical screening
    corecore