12 research outputs found

    STM and RHEED study of the Si(001)-c(8x8) surface

    Get PDF
    The Si(001) surface deoxidized by short annealing at T~925C in the ultrahigh vacuum molecular beam epitaxy chamber has been in situ investigated by high resolution scanning tunnelling microscopy (STM) and reflected high energy electron diffraction (RHEED). RHEED patterns corresponding to (2x1) and (4x4) structures were observed during sample treatment. The (4x4) reconstruction arose at T<600C after annealing. The reconstruction was observed to be reversible: the (4x4) structure turned into the (2x1) one at T>600C, the (4x4) structure appeared again at recurring cooling. The c(8x8) reconstruction was revealed by STM at room temperature on the same samples. A fraction of the surface area covered by the c(8x8) structure decreased as the sample cooling rate was reduced. The (2x1) structure was observed on the surface free of the c(8x8) one. The c(8x8) structure has been evidenced to manifest itself as the (4x4) one in the RHEED patterns. A model of the c(8x8) structure formation has been built on the basis of the STM data. Origin of the high-order structure on the Si(001) surface and its connection with the epinucleation phenomenon are discussed.Comment: 26 pages, 12 figure

    High frequency of BRCA1, but not CHEK2 or NBS1 (NBN), founder mutations in Russian ovarian cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A significant portion of ovarian cancer (OC) cases is caused by germ-line mutations in BRCA1 or BRCA2 genes. BRCA testing is cheap in populations with founder effect and therefore recommended for all patients with OC diagnosis. Recurrent mutations constitute the vast majority of BRCA defects in Russia, however their impact in OC morbidity has not been yet systematically studied. Furthermore, Russian population is characterized by a relatively high frequency of CHEK2 and NBS1 (NBN) heterozygotes, but it remains unclear whether these two genes contribute to the OC risk.</p> <p>Methods</p> <p>The study included 354 OC patients from 2 distinct, geographically remote regions (290 from North-Western Russia (St.-Petersburg) and 64 from the south of the country (Krasnodar)). DNA samples were tested by allele-specific PCR for the presence of 8 founder mutations (BRCA1 5382insC, BRCA1 4153delA, BRCA1 185delAG, BRCA1 300T>G, BRCA2 6174delT, CHEK2 1100delC, CHEK2 IVS2+1G>A, NBS1 657del5). In addition, literature data on the occurrence of BRCA1, BRCA2, CHEK2 and NBS1 mutations in non-selected ovarian cancer patients were reviewed.</p> <p>Results</p> <p>BRCA1 5382insC allele was detected in 28/290 (9.7%) OC cases from the North-West and 11/64 (17.2%) OC patients from the South of Russia. In addition, 4 BRCA1 185delAG, 2 BRCA1 4153delA, 1 BRCA2 6174delT, 2 CHEK2 1100delC and 1 NBS1 657del5 mutation were detected. 1 patient from Krasnodar was heterozygous for both BRCA1 5382insC and NBS1 657del5 variants.</p> <p>Conclusion</p> <p>Founder BRCA1 mutations, especially BRCA1 5382insC variant, are responsible for substantial share of OC morbidity in Russia, therefore DNA testing has to be considered for every OC patient of Russian origin. Taken together with literature data, this study does not support the contribution of CHEK2 in OC risk, while the role of NBS1 heterozygosity may require further clarification.</p

    The Phonon and Shock Mechanisms of Charge-Carrier Capture in Adsorption and Catalysis

    No full text
    corecore