20 research outputs found

    Adr1 and Cat8 Mediate Coactivator Recruitment and Chromatin Remodeling at Glucose-Regulated Genes

    Get PDF
    Adr1 and Cat8 co-regulate numerous glucose-repressed genes in S. cerevisiae, presenting a unique opportunity to explore their individual roles in coactivator recruitment, chromatin remodeling, and transcription.We determined the individual contributions of Cat8 and Adr1 on the expression of a cohort of glucose-repressed genes and found three broad categories: genes that need both activators for full derepression, genes that rely mostly on Cat8 and genes that require only Adr1. Through combined expression and recruitment data, along with analysis of chromatin remodeling at two of these genes, ADH2 and FBP1, we clarified how these activators achieve this wide range of co-regulation. We find that Adr1 and Cat8 are not intrinsically different in their abilities to recruit coactivators but rather, promoter context appears to dictate which activator is responsible for recruitment to specific genes. These promoter-specific contributions are also apparent in the chromatin remodeling that accompanies derepression: ADH2 requires both Adr1 and Cat8, whereas, at FBP1, significant remodeling occurs with Cat8 alone. Although over-expression of Adr1 can compensate for loss of Cat8 at many genes in terms of both activation and chromatin remodeling, this over-expression cannot complement all of the cat8Delta phenotypes.Thus, at many of the glucose-repressed genes, Cat8 and Adr1 appear to have interchangeable roles and promoter architecture may dictate the roles of these activators

    Phylogenetic and Preliminary Phenotypic Analysis of Yeast PAQR Receptors: Potential Antifungal Targets

    Get PDF
    Proteins belonging to the Progestin and AdipoQ Receptor (PAQR) superfamily of membrane bound receptors are ubiquitously found in fungi. Nearly, all fungi possess two evolutionarily distinct paralogs of PAQR protein, which we have called the PQRA and PQRB subtypes. In the model fungus Saccharomyces cerevisiae, these subtypes are represented by the Izh2p and Izh3p proteins, respectively. S. cerevisiae also possesses two additional PQRA-type receptors called Izh1p and Izh4p that are restricted to other species within the β€œSaccharomyces complex”. Izh2p has been the subject of several recent investigations and is of particular interest because it regulates fungal growth in response to proteins produced by plants and, as such, represents a new paradigm for interspecies communication. We demonstrate that IZH2 and IZH3 gene dosage affects resistance to polyene antifungal drugs. Moreover, we provide additional evidence that Izh2p and Izh3p negatively regulate fungal filamentation. These data suggest that agonists of these receptors might make antifungal therapeutics, either by inhibiting fungal development or by sensitizing fungi to the toxic effects of current antifungal therapies. This is particularly relevant for pathogenic fungi such as Candida glabrata that are closely related to S. cerevisiae and contain the same complement of PAQR receptors

    Genetic interactions between a phospholipase A2 and the Rim101 pathway components in S. cerevisiae reveal a role for this pathway in response to changes in membrane composition and shape

    Get PDF
    Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A2 (PLA2s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA2 in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA2 activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA2 activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them

    Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pterostilbene, a naturally occurring phenolic compound produced by agronomically important plant genera such as <it>Vitis </it>and <it>Vacciunium</it>, is a phytoalexin exhibiting potent antifungal activity. Additionally, recent studies have demonstrated several important pharmacological properties associated with pterostilbene. Despite this, a systematic study of the effects of pterostilbene on eukaryotic cells at the molecular level has not been previously reported. Thus, the aim of the present study was to identify the cellular pathways affected by pterostilbene by performing transcript profiling studies, employing the model yeast <it>Saccharomyces cerevisiae</it>.</p> <p>Methods</p> <p><it>S. cerevisiae </it>strain S288C was exposed to pterostilbene at the IC<sub>50 </sub>concentration (70 ΞΌM) for one generation (3 h). Transcript profiling experiments were performed on three biological replicate samples using the Affymetrix GeneChip Yeast Genome S98 Array. The data were analyzed using the statistical methods available in the GeneSifter microarray data analysis system. To validate the results, eleven differentially expressed genes were further examined by quantitative real-time RT-PCR, and <it>S. cerevisiae </it>mutant strains with deletions in these genes were analyzed for altered sensitivity to pterostilbene.</p> <p>Results</p> <p>Transcript profiling studies revealed that pterostilbene exposure significantly down-regulated the expression of genes involved in methionine metabolism, while the expression of genes involved in mitochondrial functions, drug detoxification, and transcription factor activity were significantly up-regulated. Additional analyses revealed that a large number of genes involved in lipid metabolism were also affected by pterostilbene treatment.</p> <p>Conclusion</p> <p>Using transcript profiling, we have identified the cellular pathways targeted by pterostilbene, an analog of resveratrol. The observed response in lipid metabolism genes is consistent with its known hypolipidemic properties, and the induction of mitochondrial genes is consistent with its demonstrated role in apoptosis in human cancer cell lines. Furthermore, our data show that pterostilbene has a significant effect on methionine metabolism, a previously unreported effect for this compound.</p

    Genome-Wide Analysis of Effectors of Peroxisome Biogenesis

    Get PDF
    Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for Ξ²-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function

    Pancreatic Expression and Mitochondrial Localization of the Progestin-AdipoQ Receptor PAQR10

    No full text
    Steroid hormones induce changes in gene expression by binding to intracellular receptors that then translocate to the nucleus. Steroids have also been shown to rapidly modify cell function by binding to surface membrane receptors. We identified a candidate steroid membrane receptor, the progestin and adipoQ receptor (PAQR) 10, a member of the PAQR family, in a screen for genes differentially expressed in mouse pancreatic Ξ²-cells. PAQR10 gene expression was tissue restricted compared with other PAQRs. In the mouse embryonic pancreas, PAQR10 expression mirrored development of the endocrine lineage, with PAQR10 protein expression confined to endocrine islet-duct structures in the late embryo and neonate. In the adult mouse pancreas, PAQR10 was expressed exclusively in islet cells except for its reappearance in ducts of maternal islets during pregnancy. PAQR10 has a predicted molecular mass of 29 kDa, comprises seven transmembrane domains, and, like other PAQRs, is predicted to have an intracellular N-terminus and an extracellular C-terminus. In silico analysis indicated that three members of the PAQR family, PAQRs 9, 10, and 11, have a candidate mitochondrial localization signal (MLS) at the N-terminus. We showed that PAQR10 has a functional N-terminal MLS and that the native protein localizes to mitochondria. PAQR10 is structurally related to some bacterial hemolysins, pore-forming virulence factors that target mitochondria and regulate apoptosis. We propose that PAQR10 may act at the level of the mitochondrion to regulate pancreatic endocrine cell development/survival
    corecore