26 research outputs found
Nonlinear Impurity Modes in Homogeneous and Periodic Media
We analyze the existence and stability of nonlinear localized waves described
by the Kronig-Penney model with a nonlinear impurity. We study the properties
of such waves in a homogeneous medium, and then analyze new effects introduced
by periodicity of the medium parameters. In particular, we demonstrate the
existence of a novel type of stable nonlinear band-gap localized states, and
also reveal an important physical mechanism of the oscillatory wave
instabilities associated with the band-gap wave resonances.Comment: 11 pages, 3 figures; To be published in: Proceedings of the NATO
Advanced Research Workshop "Nonlinearity and Disorder: Theory and
Applications" (Tashkent, 2-6 Oct, 2000) Editors: P.L. Christiansen and F.K.
Abdullaev (Kluwer, 2001
Exactly solvable Wadati potentials in the PT-symmetric Gross-Pitaevskii equation
This note examines Gross-Pitaevskii equations with PT-symmetric potentials of
the Wadati type: . We formulate a recipe for the construction of
Wadati potentials supporting exact localised solutions. The general procedure
is exemplified by equations with attractive and repulsive cubic nonlinearity
bearing a variety of bright and dark solitons.Comment: To appear in Proceedings of the 15 Conference on Pseudo-Hermitian
Hamiltonians in Quantum Physics, May 18-23 2015, Palermo, Italy (Springer
Proceedings in Physics, 2016
An instability criterion for nonlinear standing waves on nonzero backgrounds
A nonlinear Schr\"odinger equation with repulsive (defocusing) nonlinearity
is considered. As an example, a system with a spatially varying coefficient of
the nonlinear term is studied. The nonlinearity is chosen to be repelling
except on a finite interval. Localized standing wave solutions on a non-zero
background, e.g., dark solitons trapped by the inhomogeneity, are identified
and studied. A novel instability criterion for such states is established
through a topological argument. This allows instability to be determined
quickly in many cases by considering simple geometric properties of the
standing waves as viewed in the composite phase plane. Numerical calculations
accompany the analytical results.Comment: 20 pages, 11 figure
Stability of Spatial Optical Solitons
We present a brief overview of the basic concepts of the soliton stability
theory and discuss some characteristic examples of the instability-induced
soliton dynamics, in application to spatial optical solitons described by the
NLS-type nonlinear models and their generalizations. In particular, we
demonstrate that the soliton internal modes are responsible for the appearance
of the soliton instability, and outline an analytical approach based on a
multi-scale asymptotic technique that allows to analyze the soliton dynamics
near the marginal stability point. We also discuss some results of the rigorous
linear stability analysis of fundamental solitary waves and nonlinear impurity
modes. Finally, we demonstrate that multi-hump vector solitary waves may become
stable in some nonlinear models, and discuss the examples of stable
(1+1)-dimensional composite solitons and (2+1)-dimensional dipole-mode solitons
in a model of two incoherently interacting optical beams.Comment: 34 pages, 9 figures; to be published in: "Spatial Optical Solitons",
Eds. W. Torruellas and S. Trillo (Springer, New York
Dynamics of generalized PT-symmetric dimers with time-periodic gain–loss
A parity-time (PT)-symmetric system with periodically varying-in-time gain and loss modeled by two coupled Schrödinger equations (dimer) is studied. It is shown that the problem can be reduced to a perturbed pendulum-like equation. This is done by finding two constants of motion. Firstly, a generalized problem using Melnikov-type analysis and topological degree arguments is studied for showing the existence of periodic (libration), shift- periodic (rotation), and chaotic solutions. Then these general results are applied to the PT-symmetric dimer. It is interestingly shown that if a sufficient condition is satisfied, then rotation modes, which do not exist in the dimer with constant gain–loss, will persist. An approximate threshold for PT-broken phase corresponding to the disappearance of bounded solutions is also presented. Numerical study is presented accompanying the analytical results
Solitary waves in the Nonlinear Dirac Equation
In the present work, we consider the existence, stability, and dynamics of
solitary waves in the nonlinear Dirac equation. We start by introducing the
Soler model of self-interacting spinors, and discuss its localized waveforms in
one, two, and three spatial dimensions and the equations they satisfy. We
present the associated explicit solutions in one dimension and numerically
obtain their analogues in higher dimensions. The stability is subsequently
discussed from a theoretical perspective and then complemented with numerical
computations. Finally, the dynamics of the solutions is explored and compared
to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger
equation. A few special topics are also explored, including the discrete
variant of the nonlinear Dirac equation and its solitary wave properties, as
well as the PT-symmetric variant of the model
Wave instabilities in the presence of non vanishing background in nonlinear Schrodinger systems
We investigate wave collapse ruled by the generalized nonlinear Schroedinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show that the system can favor the formation of dispersive shock waves. The general findings are illustrated with a model of interest to both classical and quantum physics (cubic-quintic NLS equation), demonstrating a radically novel scenario of instability, where solitons identify a marginal condition between blow-up and occurrence of shock waves, triggered by arbitrarily small mass perturbations of different sign
PT-Symmetric Dimer in a Generalized Model of Coupled Nonlinear Oscillators
Abstract In the present work, we explore the case of a general PT -symmetric dimer in the context of two both linearly and nonlinearly coupled cubic oscillators. To obtain an analytical handle on the system, we first explore the rotating wave approximation converting it into a discrete nonlinear Schrödinger type dimer. In the latter context, the stationary solutions and their stability are identified numerically but also wherever possible analytically. Solutions stemming from both symmetric and anti-symmetric special limits are identified. A number of special cases are explored regarding the ratio of coefficients of nonlinearity between oscillators over the intrinsic one of each oscillator. Finally, the considerations are extended to the original oscillator model, where periodic orbits and their stability are obtained. When the solutions are found to be unstable their dynamics is monitored by means of direct numerical simulations
